In this paper, by using the Hopf¿s bifurcation theorem we will discuss the existence of small amplitude periodic solutions of the equation ¿x(t)+ f(x(t)) ÿ x(t) + g(x(t - r)) = 0, taking as bifurcation parameter c either d or r. We assume that r > 0, f 2 C1, f(0) = c > 0, g(0) = 0 and ÿ g(0) = d > 0.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados