Ir al contenido

Documat


Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces

  • Autores: Loukas Grafakos Árbol académico, Stefanie Petermichl Árbol académico, Oliver Dragicevic, María Cristina Pereyra
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 49, Nº 1, 2005, págs. 73-91
  • Idioma: inglés
  • DOI: 10.5565/publmat_49105_03
  • Enlaces
  • Resumen
    • We obtain sharp weighted $L^p$ estimates in the Rubio de Francia extrapolation theorem in terms of the $A_p$ characteristic constant of the weight. Precisely, if for a given $1 < r < \infty$ the norm of a sublinear operator on $L^r(w)$ is bounded by a function of the $A_r$ characteristic constant of the weight $w$, then for $p > r$ it is bounded on $L^p(v)$ by the same increasing function of the $A_p$ characteristic constant of $v$, and for $p < r$ it is bounded on $L^p(v)$ by the same increasing function of the $\frac{r-1}{p-1}$ power of the $A_p$ characteristic constant of $v$. For some operators these bounds are sharp, but not always. In particular, we show that they are sharp for the Hilbert, Beurling, and martingale transforms.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno