Ir al contenido

Documat


Estimation ospectral density of a homogeneus random stable discrete time field

  • Autores: S.L. Chekhmenok, Nikolay N. Demesh
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 29, Nº. 1, 2005, págs. 101-117
  • Idioma: inglés
  • Títulos paralelos:
    • Estimación de la densidad espectral de un campo aleatorio homogéneo estable en tiempo discreto.
  • Enlaces
  • Resumen
    • In earlier papers, 2p-periodic spectral data windows have been used in spectral estimation of discrete- time random fields having finite second-order moments. In this paper, we show that 2p-periodic spectral windows can also be used to construct estimates of the spectral density of a homogeneous symmetric a-stable discrete-time random field. These fields do not have second-order moments if 0 < a < 2. We construct an estimate of the spectrum, calculate the asymptotic mean and variance, and prove weak consistency of our estimate.

  • Referencias bibliográficas
    • Brillinger, D.R. (1975). Time Series: Data Analysis and Theory. New York: Holt, Rinehart and Winston, Inc.
    • Demesh, N.N. (1988). Using polynomial kernels in evaluation of spectrum of discrete time random stable processes. Preprint Academy of Science...
    • Hardin, C.D. (1982). On the spectral representation of symmetric stable processes. Journal of Multivariate Analysis, 12, 385-401.
    • Hosoya, Y. (1978). Discrete Time Stable Processes and their Certain Properties. Annals of Probability, 6, 107-133.
    • Leonenko, N.N., Ivanov, A.V. (1989). Statistical Analysis of Random Fields. Boston: Kluwer Academic Publishers.
    • Masry, E., Cambanis, S. (1984). Spectral Density Estimation for stationary stable processes. Stochastic Process. Appl., 18, 1-31.
    • Nolan, J.P. (1988). Path properties of index-β stable fields. The Annals of Probability, 16, 1569-1607.
    • Orlova, E.N. (1993). Investigation of periodogram statistics of spectral density of a homogeneous stable random field. Proceedings of the...
    • Paulauskas, V.J. (1976). Some remarks on multivariate stable distributions. Journal of Multivariate Analysis, 6, 356-368.
    • Press, S.J. (1972). Multivariate stable distributions. Journal of Multivariate Analysis, 2, 444-462.
    • Sabre, R. (1995). Spectral Density Estimation for Stationary Random Fields. Applied Mathematics (Warsaw), 23, 107-133.
    • Sabre, R. (2000). Discrete Estimation of Spectral Density for Symmetric Stable Process. Statistica, 60, 497- 519.
    • Skorokhod, A.V. (1991). Random Processes with Independent Increments . Boston: Kluwer Academic Publishers.
    • Trush, N.N. (1999). Asymptotical Properties of Time Series. Minsk: BSU.
    • Trush, N.N., Orlova, E.N. (1994). Statistical properties of the periodogram of stable random field. Herald of National Academy of Science...
    • Zolotarev, V.M. (1986). One-dimensional Stable Distributions. v. 65, American Mathematical Society: Translations of Mathematical Monographs.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno