Ir al contenido

Documat


Positivity theorem for a general manifold

  • Autores: Rémi Léandre
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 29, Nº. 1, 2005, págs. 11-25
  • Idioma: inglés
  • Títulos paralelos:
    • Teorema de positividad para una variedad general
  • Enlaces
  • Resumen
    • We give a generalization in the non-compact case to various positivity theorems obtained by Malliavin Calculus in the compact case.

  • Referencias bibliográficas
    • Aida, S. Kusuoka, S., Stroock, D.W. (1993). On the support of Wiener functionals. In Asymptotics Problems in Probability Theory: Wiener Functionals...
    • Bally, V., Pardoux, E. (1998). Malliavin Calculus for white noise driven parabolic S.P.D.E.S. Potential analysis. 9.1., 27-64.
    • Ben Arous G., Léandre R. (1991). Décroissance exponentielle du noyau de la chaleur sur la diagonale (II). Probab. Theory Rel. Fields 90.3,...
    • Bismut, J.M. (1984). Large deviations and the Malliavin Calculus. Progress in Math. 45. Basel:Birkhauser (1984).
    • Bochnak, J., Coste, M., Roy, M.F. hspace-0.1cm(1998). Real Algebraic Geometry. Heidelberg: Springer.
    • Carlen, E., Kusuoka, S., Stroock, D.W. (1987). Upper bounds for symmetric transition functions. Ann. I.H.P. 23, 145-187.
    • Carverhill, A.P., Elworthy, K.D. (1983). Flows of stochastic dynamical systems: the functional analytical approach. Z.W. 65 245-267.
    • Elworthy, K.D. (1982). Stochastic Differential Equations on Manifolds. L.M.S. Lectures Notes Series 20. Cambridge: Cambridge University Press.
    • Emery, M. (1989). Stochastic Calculus in Manifolds. Heidelberg: Springer (1989).
    • Fournier, N. (2001). Strict positivity of the solution to a 2-dimensional spatially homogeneous equation without cutoff. Annales de l’Institut...
    • Gilkey, P. (1995). Invariance theory, the heat equation and the Atiyah-Singer theorem. New York: C.R.C. Press.
    • Hoermander, L. (1967). Hypoelliptic second order equations. Act. Math. 119, 147-171.
    • Ikeda, N., Watanabe, S. (1981). Stochastic Differential Equations and Diffusion Processes. Amsterdam: North-Holland.
    • Jones, J.D.S., Léandre, R. (1997). A stochastic approach to the Dirac operator over the free loop space. Proc. Steklov. Inst. 217, 253-282.
    • Kusuoka, S. (1992). More recent theory of Malliavin Calculus. Sugaku 5, 155-173.
    • Léandre, R. (1983). Un exemple en théorie des flots stochastiques.In Séminaire de Probabilités XVII. Azéma J. Yor M. (eds). Lecture...
    • Léandre, R. (1988). Appliquations quantitatives et qualitatives du Calcul de Malliavin. In French-Japanese seminar M. Métivier S. Watanabe...
    • Léandre, R. (1990). Strange behaviour of the heat kernel on the diagonal. In Stochastic Processes, Physics and Geometry. S. Albeverio and...
    • Léandre, R. (1994). Brownian motion over a Kaehler manifold and elliptic genera of level N. In Stochastic Analysis and Applications in Physics...
    • Léandre, R. (2002). Stochastic mollifer and Nash inequality. To appear in Proceedings of the Satellite Conference of Stochastic Analysis...
    • Léandre, R. (2003a). Positivity theorem for a stochastic delay equation on a manifold. Proceedings of the 8th Vilnius conference. V. Paulauskas,...
    • Léandre, R. (2003b). Malliavin Calculus for a general manifold. In Equations aux derivées partielles 2002/2003. J.M. Bony J.Y. Chemin,...
    • Léandre, R. (2004). A geometrical hypoelliptic diffusion. Preprint Inst. Mathétiques de Bourgogne (374).
    • Léandre, R., Mohammed, S. (2001). Stochastic functional differential equations on manifolds. Probability Theory and Related Fields, 121,...
    • Malliavin, P. (1978). Stochastic calculus of variation and hypoelliptic operators. In Stochastic Analysis K. Itô (ed.) Tokyo: Kinokuyina,...
    • Meyer, P.A. (1981). Flot d’une équation différentielle stochastique. In Séminaire de Probabilités XV. J. Azéma M. Yor (eds). Lecture...
    • Meyer, P.A. (1984). Le Calcul de Malliavin et un peu de pédagogie. In R.C.P. 25. Volume 34. Public. Univ. Strasbourg, 17-43.
    • Millet, A., Sanz-Solé, M. (1997). Points of positive density for the solution to a hyperbolic SPDE. Potential Analysis 7, 623-659.
    • Norris, J. (1986). Simplified Malliavin Calculus. in Séminaire de Probabilités XX. J. Azéma, M. Yor edit. Lecture Notes. Math. 1204....
    • Nualart, D. (1995). The Malliavin Calculus and related topics. Heidelberg: Springer.
    • Nualart, D., Sanz-Solé, M. (1985). Malliavin Calculus for Two-Parameter Wiener Functionals. Z.W. 70, 573-590.
    • Pardoux, E., Zhang, T. (1993). Absolute continuity for the law of the solution of a parabolic SPDE. J.F.A. 112, 447-458.
    • Walsh, J.B. (1986). An introduction to stochastic partial differential equations. In Ecole d’Eté de Probabilités de Saint-Flour XV Hennequin...
    • Watanabe, S. (1992). Stochastic analysis and its applications. Sugaku 5, 21-71.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno