Ir al contenido

Documat


On D*-extension property of the Hartogs domains

  • Autores: Do Duc Thai, Pascal J. Thomas
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 45, Nº 2, 2001, págs. 421-429
  • Idioma: inglés
  • DOI: 10.5565/publmat_45201_07
  • Títulos paralelos:
    • Sobre la propiedad D*-extensión de los dominios de Hartogs
  • Enlaces
  • Resumen
    • A complex analytic space is said to have the D*-extension property if and only if any holomorphic map from the punctured disk to the given space extends to a holomorphic map from the whole disk to the same space. A Hartogs domain H over the base X (a complex space) is a subset of X x C where all the fibers over X are disks centered at the origin, possibly of infinite radius. Denote by f the function giving the logarithm of the reciprocal of the radius of the fibers, so that, when X is pseudoconvex, H is pseudoconvex if and only if f is plurisubharmonic.

      We prove that H has the D*-extension property if and only if (i) X itself has the D*-extension property, (ii) f takes only finite values and (iii) f is plurisubharmonic. This implies the existence of domains which have the D*-extension property without being (Kobayashi) hyperbolic, and simplifies and generalizes the authors' previous such example.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno