Ir al contenido

Documat


Existence and nonexistence of radial positive solutions of superlinear elliptic systems

  • Autores: Abdelaziz Ahammou
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 45, Nº 2, 2001, págs. 399-419
  • Idioma: inglés
  • DOI: 10.5565/publmat_45201_06
  • Títulos paralelos:
    • Existencia y no existencia de soluciones radiales positivas de sistemas elípticos superlineales
  • Enlaces
  • Resumen
    • The main goal in this paper is to prove the existence of radial positive solutions of the quasilinear elliptic system ì -?pu = f(x,u,v) in O, í -?qv = g(x,u,v) in O, î u = v = 0 on ?O, where O is a ball in RN and f, g are positive continuous functions satisfying f(x, 0, 0) = g(x, 0, 0) = 0 and some growth conditions which correspond, roughly speaking, to superlinear problems. Two different sets of conditions, called strongly and weakly coupled, are given in order to obtain existence. We use the topological degree theory combined with the blow up method of Gidas and Spruck. When O = RN, we give some sufficient conditions of nonexistence of radial positive solutions for Liouville systems.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno