It is proved in this paper that the maximum number of limit cycles of system \[ \begin{cases} \frac{dx}{dt}=y,\\ \frac{dy}{dt}=kx-(k+1)x^2+x^3+\epsilon(\alpha+\beta x+\gamma x^2)y \end{cases} \] is equal to two in the finite plane, where $k>\frac{11+\sqrt{33}}{4}$, $0<|\epsilon|\ll1$, $|\alpha|+|\beta|+|\gamma|\ne 0$. This is partial answer to the seventh question in [2], posed by Arnold.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados