Ir al contenido

Documat


Maximal non-Jaffard subrings of a field

  • Autores: Mabrouk Ben Nasr, Noôman Jarboui
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 44, Nº 1, 2000, págs. 157-175
  • Idioma: inglés
  • DOI: 10.5565/publmat_44100_05
  • Títulos paralelos:
    • Subanillos no-Jaffard máximos de un campo
  • Enlaces
  • Resumen
    • A domain R is called a maximal non-Jaffard subring of a field L if $R\subset L$, R is not a Jaffard domain and each domain T such that $R\subset T\subseteq L$ is Jaffard. We show that maximal non-Jaffard subrings R of a field L are the integrally closed pseudo-valuation domains satisfying $\dim_v R = \dim R + 1$. Further characterizations are given. Maximal non-universally catenarian subrings of their quotient fields are also studied. It is proved that this class of domains coincides with the previous class when R is integrally closed. Moreover, these domains are characterized in terms of the altitude formula in case R is not integrally closed. An example of a maximal non-universally catenarian subring of its quotient field which is not integrally closed is given (Example 4.2). Other results and applications are also given.

      --------------------------------------------------------------------------------


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno