Ir al contenido

Documat


The nilpotency of some groups with all subgroups subnormal

  • Autores: Howard Smith, Leonid A. Kurdachenko Árbol académico
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 42, Nº 2, 1998, págs. 411-421
  • Idioma: inglés
  • DOI: 10.5565/publmat_42298_08
  • Títulos paralelos:
    • Nilpotencia de algunos grupos con todos sus subgrupos subnormales
  • Enlaces
  • Resumen
    • Let $G$ be a group with all subgroups subnormal. A normal subgroup $N$ of $G$ is said to be $G$-minimax if it has a finite $G$-invariant series whose factors are abelian and satisfy either $\max$-$G$ or $\min$-$G$. It is proved that if the normal closure of every element of $G$ is $G$-minimax then $G$ is nilpotent and the normal closure of every element is minimax. Further results of this type are also obtained.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno