Ir al contenido

Documat


On the ranges of bimodule projections

  • Autores: Aristides Katavolos, Vern I. Paulsen
  • Localización: Canadian mathematical bulletin, ISSN 0008-4395, Vol. 48, Nº 1, 2005, págs. 97-111
  • Idioma: inglés
  • DOI: 10.4153/cmb-2005-009-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We develop a symbol calculus for normal bimodule maps over a masa that is the natural analogue of the Schur product theory. Using this calculus we are easily able to give a complete description of the ranges of contractive normal bimodule idempotents that avoids the theory of J*-algebras. We prove that if P is a normal bimodule idempotent and ||P|| < 2/sqrt{3} then P is a contraction. We finish with some attempts at extending the symbol calculus to non-normal maps.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno