Ir al contenido

Documat


The Analysis of Ordered Categorical Data: An Overview and a Survey of Recent Developments

  • Autores: Ivy Liu, Alan Agresti
  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 14, Nº. 1, 2005, págs. 1-73
  • Idioma: inglés
  • DOI: 10.1007/bf02595397
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This article reviews methodologies used for analyzing ordered categorical (ordinal) response variables. We begin by surveying models for data with a single ordinal response variable. We also survey recently proposed strategies for modeling ordinal response variables when the data have some type of clustering or when repeated measurement occurs at various occasions for each subject, such as in longitudinal studies. Primary models in that case include marginal models and cluster-specific (conditional) models for which effects apply conditionally at the cluster level. Related discussion refers to multi-level and transitional models. The main emphasis is on maximum likelihood inference, although we indicate certain models (e.g., marginal models, multi-level models) for which this can be computationally difficult. The Bayesian approach has also received considerable attention for categorical data in the past decade, and we survey recent Bayesian approaches to modeling ordinal response variables. Alternative, non-model-based, approaches are also available for certain types of inference.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno