Ir al contenido

Documat


Peak-interpolating curves for A(O) for finite-type domains in C2

  • Autores: Gautam Bharali
  • Localización: Pacific journal of mathematics, ISSN 0030-8730, Vol. 218, Nº 2, 2005, págs. 283-298
  • Idioma: inglés
  • DOI: 10.2140/pjm.2005.218.283
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let O be a bounded, weakly pseudoconvex domain in C2, having smooth boundary. A(O) is the algebra of all functions holomorphic in O and continuous up to the boundary. A smooth curve C ? ?O is said to be complex-tangential if Tp(C) lies in the maximal complex subspace of Tp(?O) for each p in C. We show that if C is complex-tangential and ?O is of constant type along C, then every compact subset of C is a peak-interpolation set for A(O). Furthermore, we show that if ?O is real-analytic and C is an arbitrary real-analytic, complex-tangential curve in ?O, compact subsets of C are peak-interpolation sets for A(O).


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno