Let K = Q(,), where d1 and d2 are positive square-free integers such that (d1,d2) = 1. Let K2(1) be the Hilbert 2-class ?eld of K. Let K2(2) be the Hilbert 2-class ?eld of K2(1) and K(*) the genus ?eld of K. We suppose that K2(1)K(*) and Gal(K2(1)/K) ? Z/2Z × Z/2Z. We study the capitulation problem of the 2-ideal classes of K in the sub-extensions of K2(1)/K and we determine the structure of Gal(K2(2)).
© 2008-2024 Fundación Dialnet · Todos los derechos reservados