Ir al contenido

Documat


Uncomplemented copies of C(K) inside C(K)

  • Autores: Francisco Arranz Muñoz
  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 11, Nº 3, 1996, págs. 412-413
  • Idioma: inglés
  • Títulos paralelos:
    • Copias incomplementadas de C(K) dentro de C(K)
  • Enlaces
  • Resumen
    • Throughout this note, whenever K is a compact space C(K) denotes the Banach space of continuous functions on K endowed with the sup norm. Though it is well known that every infinite dimensional Banach space contains uncomplemented subspaces, things may be different when only C(K) spaces are considered. For instance, every copy of l8 = C(BN) is complemented wherever it is found. In [5] Pelzcynski found: Theorem 1. Let K be a compact metric space. If a separable Banach space X contains a subspace Y isomorphic to C(K) then Y contains a new subspace Z isomorphic to C(K) and complemented in X. Our aim is to obtain the uncomplemented version of Pelczynski's Theorem 1.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno