Ir al contenido

Documat


Clifford and Harmonic Analysis on Cylinders and Tori

  • Autores: John Ryan, Rolf Sören Krausshar
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 21, Nº 1, 2005, págs. 87-110
  • Idioma: inglés
  • DOI: 10.4171/rmi/416
  • Títulos paralelos:
    • Análisis armónico y de Clifford en cilindros y toros.
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Cotangent type functions in Rn are used to construct Cauchy kernels and Green kernels on the conformally flat manifolds Rn/Zk where 1 < = k ? M. Basic properties of these kernels are discussed including introducing a Cauchy formula, Green's formula, Cauchy transform, Poisson kernel, Szegö kernel and Bergman kernel for certain types of domains. Singular Cauchy integrals are also introduced as are associated Plemelj projection operators. These in turn are used to study Hardy spaces in this context. Also the analogues of Calderón-Zygmund type operators are introduced in this context, together with singular Clifford holomorphic, or monogenic, kernels defined on sector domains in the context of cylinders. Fundamental differences in the context of the n-torus arising from a double singularity for the generalized Cauchy kernel on the torus are also discussed.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno