Ir al contenido

Documat


Continuous Adjacency Preserving Maps on Real Matrices

  • Autores: Peter Semrl, Leiba Rodman, Ahmed R. Sourour
  • Localización: Canadian mathematical bulletin, ISSN 0008-4395, Vol. 48, Nº 2, 2005, págs. 267-274
  • Idioma: inglés
  • DOI: 10.4153/cmb-2005-025-6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • It is proved that every adjacency preserving continuous map on the vector space of real matrices of fixed size, is either a bijective affine tranformation of the form A \mapsto PAQ + R, possibly followed by the transposition if the matrices are of square size, or its range is contained in a linear subspace consisting of matrices of rank at most one translated by some matrix R. The result extends previously known theorems where the map was assumed to be also injective.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno