Ir al contenido

Documat


Wavelet-Based Functional Reconstruction and Extrapolation of Fractional Random Fields

  • Autores: Rosaura Fernández Pascual Árbol académico, María Dolores Ruiz Medina Árbol académico, José Miguel Angulo Ibáñez Árbol académico
  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 13, Nº. 2, 2004, págs. 417-444
  • Idioma: inglés
  • DOI: 10.1007/bf02595780
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Least-squares linear functional reconstruction and extrapolation of a random field defining the random input of a linear system represented by an integral equation is considered. This problem is solved for a class of random fields with reproducing kernel Hilbert space norm equivalent to the norm of a Sobolev space of an appropriate fractional order. More specifically, functional reconstruction and extrapolation formulae are derived from generalized wavelet-based orthogonal expansions of the input and output random fields in the class considered (see Angulo and Ruiz-Medina, 1999, for the ordinary case). In the Gaussian and ordinary case, the results derived also provide sample-path functional reconstruction and extrapolation formulae. Simulation studies are carried out for systems defined in terms of fractional integration of fractional Brownian motion.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno