Ir al contenido

Documat


Asymptotic normality of the integrated square error of a density estimator in the convolution model

  • Autores: C. Butucea
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 28, Nº. 1, 2004, págs. 9-26
  • Idioma: inglés
  • Títulos paralelos:
    • Normalidad asintótica del error cuadrático integrado de un estimador de la densidad en el modelo de convolución.
  • Enlaces
  • Resumen
    • In this paper we consider a kernel estimator of a density in a convolution model and give a central limit theorem for its integrated square error (ISE). The kernel estimator is rather classical in minimax theory when the underlying density is recovered from noisy observations. The kernel is fixed and depends heavily on the distribution of the noise, supposed entirely known. The bandwidth is not fixed, the results hold for any sequence of bandwidths decreasing to 0. In particular the central limit theorem holds for the bandwidth minimizing the mean integrated square error (MISE). Rates of convergence are sensibly different in the case of regular noise and of super-regular noise. The smoothness of the underlying unknown density is relevant for the evaluation of the MISE.

  • Referencias bibliográficas
    • Butucea, C. (2004). Deconvolution of supersmooth densities with smooth noise, Canadian J. Statist., 32, to appear.
    • Butucea, C. and Tsybakov, A.B. (2003). Fast asymptotics in density deconvolution, Manuscript.
    • Carroll, R.J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density, J. Amer. Statist. Assoc., 83, 1184-1186.
    • Fan, J. (1991a). Global behavior of deconvolution kernel estimates, Statist. Sinica, 1, 541-551.
    • Fan, J. (1991b). Asymptotic normality for deconvolution kernel density estimators, Sankhy¯a Ser. A, 53, 97- 110.
    • Fan, J. and Koo, J.-Y. (2002). Wavelet deconvolution, IEEE Trans. Inform. Theory, 48, 734-747.
    • Fan, Y. and Liu, Y. (1997). A note on asymtptotic normality for deconvolution kernel estimators, Sankhy¯a Ser. A, 59, 138-141.
    • Goldenshluger, A. (1999). On pointwise adaptive nonparametric deconvolution, Bernoulli, 5, 907-926.
    • Hall, P. (1984). Central limit theorem for integrated square error of multivariate nonparametric density estimators, Journal of Multivariate...
    • Laurent, B. (1996). Efficient estimation of integral functionals of a density, Ann. Statist., 24, 659-681.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno