Ir al contenido

Documat


Local superefficiency of data-driven projection density estimators in continuous time

  • Autores: D. Bosq, D. Blanke
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 28, Nº. 1, 2004, págs. 37-54
  • Idioma: inglés
  • Títulos paralelos:
    • Supereficiencia local de estimadores de densidad por proyección gobernados por los datos en tiempo continuo.
  • Enlaces
  • Resumen
    • We construct a data-driven projection density estimator for continuous time processes. This estimator reaches superoptimal rates over a class F0 of densities that is dense in the family of all possible densities, and a «reasonable» rate elsewhere. The class F0 may be chosen previously by the analyst. Results apply to Rd-valued processes and to N-valued processes. In the particular case where square-integrable local time does exist, it is shown that our estimator is strictly better than the local time estimator over F0.

  • Referencias bibliográficas
    • Billingsley, P. (1979). Probability and Measure, Wiley, New-York.
    • Blanke, D. and Bosq, D. (2000). A family of minimax rates for density estimators in continuous time, Stochastic Anal. Appl., 18, 871-900.
    • Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes. Estimation and Prediction, Lecture Notes in Statistics, 110, Second edn,...
    • Bosq, D. (2002a). Estimation localement suroptimale et adaptative de la densite,´ C.R. Acad. Sci. Paris Ser. I, 334, 591-595.
    • Bosq, D. (2002b). Estimation suroptimale de la densite par projection. Submitted for publication. ´
    • Bosq, D. and Davydov, Yu. (1999). Local time and density estimation in continuous time, Math. Methods Statist., 8, 22-45.
    • Castellana, J.V. and Leadbetter, M.R. (1986). On smoothed probability density estimation for stationary processes, Stochastic Process. Appl.,...
    • Doukhan, P. (1994). Mixing : Properties and Examples, Lecture Notes in Statistics, 85, Springer-Verlag.
    • Frenay, A. (2001). Sur l’estimation de la densite marginale d’un processus ´ a temps continu par projection ` orthogonale, Ann. I.S.U.P.,...
    • Geman, D. and Horowitz, J. (1980). Occupation densities, Ann. Probab., 8, 1-67.
    • Pollard, D. (1984). Convergence of Stochastic Processes, Springer-Verlag, New-York.
    • Rio, E. (2000). Th´eorie Asymptotique des Processus Al´eatoires Faiblements D´ependants, Mathematiques ´ & Applications, (31), Springer-Verlag.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno