Ir al contenido

Documat


Aspects of analysis of multivariate failure time data

  • Autores: R.L. Prentice, J.D. Kalbfleisch
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 27, Nº. 1, 2003, págs. 65-78
  • Idioma: inglés
  • Títulos paralelos:
    • Aspectos de análisis de datos multivariantes de tiempo de fallo
  • Enlaces
  • Resumen
    • Multivariate failure time data arise in various forms including recurrent event data when individuals are followed to observe the sequence of occurrences of a certain type of event; correlated failure time when an individual is followed for the occurrence of two or more types of events for which the individual is simultaneously at risk, or when distinct individuals have depending event times; or more complicated multistate processes where individuals may move among a number of discrete states over the course of a follow-up study and the states and associated sojourn times are recorded. Here we provide a critical review of statistical models and data analysis methods for the analysis of recurrent event data and correlated failure time data. This review suggests a valuable role for partially marginalized intensity models for the analysis of recurrent event data, and points to the usefulness of marginal hazard rate models and nonparametric estimates of pairwise dependencies for the analysis of correlated failure times. Areas in need of further methodology development are indicated

  • Referencias bibliográficas
    • Aalen, O.O. and Husebye, E. (1991). Statistical analysis of repeated events forming renewal processes. Statistics in Medicine 10, 1227-1240.
    • Andersen, P.K., Borgan, O., Gill, R.D. and Keiding, N. (1993). Statistical Models Based on Counting Processes, New York: Springer-Verlag.
    • Andersen, P.K. and Gill, R.D. (1982). Cox’s regression model for counting processes: a large sample study. Annals of Statistics, 10, 1100-1120.
    • Andrews, D.F. and Herzberg, A.M. (1985). Data: A Collection of Problems from Many Fields for the Student and Research Worker, New York: Springer-Verlag.
    • Byar, D.P. (1980). The Veteran’s Administration study of chemoprophylaxis of recurrent stage I bladder tumors: comparisons of placebo, pyridoxine,...
    • Cai, J. and Prentice, R.L. (1995). Estimating equations for hazard ratio parameters based on correlated failure time data. Biometrika, 82,...
    • Cai, J. and Prentice, R.L. (1997). Regression estimation using multivariate failure time data and a common baseline hazard function model....
    • Cox, D.R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B, 34, 187-220.
    • Cox, D.R. (1973). The statistical analysis of dependencies in point processes. In: Symposium on Point Processes. P.A.W. Lewis, ed., pp. 55-66,...
    • Cox, D.R. and Isham, V. (1980). Point Processes, London: Chapman and Hall.
    • Cox, D.R. and Lewis, P.A. (1966). The Statistical Analysis of a Series of Events, London: Methuen.
    • Dabrowska, D.M. (1988). Kaplan-Meier estimate on the plane. Annals of Statistics, 16, 1475-1489.
    • Fan, J., Hsu, L. and Prentice, R.L. (2000). Dependence estimation over a finite bivariate failure time region. Lifetime Data Analysis, 6,...
    • Gail, M.H., Santner, T.J. and Brown, C.C. (1980). An analysis of comparative carcinogenesis experiments based on multiple times to tumor....
    • Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer-Verlag, New York.
    • Kalbfleisch, J.D. and Prentice, R.L. (2002). The Statistical Analysis of Failure Time Data, Second Edition. New York: Wiley.
    • Lawless, J.F. (1987). Regression methods for Poisson process data. Journal of the American Statistical Association, 82, 808-815.
    • Lawless, J.F. and Nadeau, C. (1995). Some simple and robust methods for the analysis of recurrent events. Technometrics, 37, 158-168.
    • Lee, E.W., Wei, L.J. and Amato, D.A. (1992). Cox-type regression analysis for large numbers of small groups of correlated failure time observations....
    • Lin, D.Y., Sun, W. and Ying, Z. (1999). Nonparametric estimation of the gap time distribution for serial events with censored data. Biometrika,...
    • Lin, J.S. and Wei, L.J. (1992). Linear regression for multivariate failure time observations. Journal of the American Statistical Association,...
    • Lin, D.Y., Wei, L.J., Yang, I. and Ying, Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events. Journal...
    • Lin, D.Y., Wei, L.J. and Ying, Z. (1998). Accelerated failure time models for counting processes. Biometrika, 85, 605-618.
    • Nelson, W.B. (1988). Graphical analysis of system repair data. Journal of Quality Technology, 20, 24-35.
    • Nelson, W.B. (1995). Confidence limits for recurrence data-applied to cost or number of product repairs. Technometrics, 37, 147-157.
    • Oakes, D. (1989). Bivariate survival models induced by frailties. Journal of the American Statistical Association, 84, 487-493.
    • Pepe, M.S. and Cai, J. (1993). Some graphical displays and marginal regression analyses for recurrent failure times and time dependent covariates....
    • Prentice, R.L. and Cai, J. (1992). Covariance and survivor function estimation using censored multivariate failure time data. Biometrika,...
    • Prentice, R.L., Williams, B.J. and Peterson, A.V. (1981). On the regression analysis of multivariate time data. Biometrika, 68, 373-379.
    • Robins, J.M., Rotnitsky, A. and Zhao, L.P. (1994). Estimation of regression coefficients when some regressors are not always observed. Journal...
    • Snyder, D.L. (1975). Random Point Processes, New York: Wiley.
    • Van der Laan, M.J. (1996). Efficient estimation in the bivariate censoring model and repairing NPMLE. Annals of Statistics, 24, 596-627.
    • Wang, M.-C. and Chang, S.-H. (1999). Nonparametric estimation of a recurrent survival function. Journal of the American Statistical Association,...
    • Wang, M.-C., Qin, J. and Chiang, C.-T. (2001). Analyzing recurrent event data with informative censoring. Journal of the American Statistical...
    • Wei, L.J., Lin, D.Y. and Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno