Ir al contenido

Documat


On real Kähler Euclidean submanifolds with non-negative Ricci curvature

  • Autores: Wing San Hui, Luis A. Florit, Fangyang Zheng
  • Localización: Journal of the European Mathematical Society, ISSN 1435-9855, Vol. 7, Nº 1, 2005, págs. 1-12
  • Idioma: inglés
  • DOI: 10.4171/jems/19
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We show that any real K\"ahler Euclidean submanifold \fk with either non-negative Ricci curvature or non-negative holomorphic sectional curvature has index of relative nullity greater than or equal to $2n-2p$. Moreover, if equality holds everywhere, then the submanifold must be a product of Euclidean hypersurfaces almost everywhere, and the splitting is global provided that $M^{2n}$ is complete. In particular, we conclude that the only real K\"ahler submanifolds $M^{2n}$ in $\R^{3n}$ that have either positive Ricci curvature or positive holomorphic sectional curvature are precisely products of $n$ orientable surfaces in $\R^3$ with positive Gaussian curvature. Further applications of our main result are also given.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno