Alexandre Eremenko, Walter Bergweiler
Our main result implies the following theorem: Let f be a transcendental meromorphic function in the complex plane. If f has finite order ?, then every asymptotic value of f, except at most 2? of them, is a limit point of critical values of f.
We give several applications of this theorem. For example we prove that if f is a transcendental meromorphic function then f'fn with n = 1 takes every finite non-zero value infinitely often. This proves a conjecture of Hayman. The proof makes use of the iteration theory of meromorphic functions
© 2008-2024 Fundación Dialnet · Todos los derechos reservados