Ir al contenido

Documat


Recurrence for weighted pseudo-shift operators

  • Mohamed Amouch [1] ; Fatima-ezzahra Sadek [1]
    1. [1] Department of Mathematics, Chouaib Doukkali University, Faculty of Sciences, El Jadida, Morocco
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 68, Nº. 2, 2025, págs. 775-786
  • Idioma: inglés
  • DOI: 10.33044/revuma.4120
  • Enlaces
  • Resumen
    • We provide a characterization of multiply recurrent operators that act on a Fr´echet space. As an application, we extend the weighted shift results established by Costakis and Parissis (2012). We achieve this by characterizing topologically multiply recurrent pseudo-shifts acting on an F-sequence space indexed by an arbitrary countable infinite set. This characterization is in terms of the weights, the OP-basis and the shift mapping. Additionally, we establish that the recurrence and the hypercyclicity of pseudo-shifts are equivalent.

  • Referencias bibliográficas
    • F. Bayart and E. Matheron, Dynamics of linear operators, Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge, 2009....
    • O. Benchiheb, F. Sadek, and M. Amouch, On super-rigid and uniformly super-rigid operators, Afr. Mat. 34 no. 1 (2023), Paper no. 6. DOI MR...
    • A. Bonilla, K.-G. Grosse-Erdmann, A. Lopez-Mart ´ ´ınez, and A. Peris, Frequently recurrent operators, J. Funct. Anal. 283 no. 12 (2022),...
    • R. Cardeccia and S. Muro, Arithmetic progressions and chaos in linear dynamics, Integral Equations Operator Theory 94 no. 2 (2022), Paper...
    • R. Cardeccia and S. Muro, Multiple recurrence and hypercyclicity, Math. Scand. 128 no. 3 (2022), 589–610. DOI MR Zbl
    • R. Cardeccia and S. Muro, Frequently recurrence properties and block families, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM...
    • N. C¸ olakoglu ˘ , O. Martin ¨ , and R. Sanders, Disjoint and simultaneously hypercyclic pseudo-shifts, J. Math. Anal. Appl. 512 no. 2 (2022),...
    • G. Costakis, A. Manoussos, and I. Parissis, Recurrent linear operators, Complex Anal. Oper. Theory 8 no. 8 (2014), 1601–1643. DOI MR Zbl
    • G. Costakis and I. Parissis, Szemer´edi’s theorem, frequent hypercyclicity and multiple recurrence, Math. Scand. 110 no. 2 (2012), 251–272....
    • N. S. Feldman, The dynamics of cohyponormal operators, in Trends in Banach spaces and operator theory (Memphis, TN, 2001), Contemp. Math....
    • H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemer´edi on arithmetic progressions, J. Analyse Math. 31 (1977),...
    • S. Grivaux, A. Lopez-Mart ´ ´ınez, and A. Peris, Questions in linear recurrence I: the T ⊕ Trecurrence problem, Anal. Math. Phys. 15 no. 1...
    • K.-G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts, Studia Math. 139 no. 1 (2000), 47–68. DOI MR Zbl
    • K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear chaos, Universitext, Springer, London, 2011. DOI MR Zbl
    • O. Martin ¨ , Q. Menet, and Y. Puig, Disjoint frequently hypercyclic pseudo-shifts, J. Funct. Anal. 283 no. 1 (2022), Paper no. 109474. DOI...
    • H. Poincare´, Sur le probl`eme des trois corps et les ´equations de la dynamique, Acta Math. 13 no. 1-2 (1890), 1–270. Zbl Available at...
    • H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 no. 3 (1995), 993– 1004. DOI MR Zbl
    • Y. Wang, C. Chen, and Z.-H. Zhou, Disjoint hypercyclic weighted pseudoshift operators generated by different shifts, Banach J. Math. Anal....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno