Ir al contenido

Documat


Superpower graphs of finite abelian groups

  • Ajay Kumar [1] ; Lavanya Selvaganesh [1] ; T. Tamizh Chelvam [2]
    1. [1] Department of Mathematical Sciences, Indian Institute of Technology, Banaras Hindu University, Varanasi-221005, India
    2. [2] Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 68, Nº. 2, 2025, págs. 761-773
  • Idioma: inglés
  • DOI: 10.33044/revuma.4587
  • Enlaces
  • Resumen
    • For a finite group G, the superpower graph S(G) is a simple undirected graph with vertex set G, where two distinct vertices are adjacent if and only if the order of one divides that of the other. The aim of this paper is to provide tight bounds for the vertex connectivity of S(G), together with some structural properties such as maximal domination sets, Hamiltonicity, and its variations for superpower graphs of finite abelian groups. The paper concludes with some open problems.

  • Referencias bibliográficas
    • J. Abawajy, A. Kelarev, and M. Chowdhury, Power graphs: a survey, Electron. J. Graph Theory Appl. (EJGTA) 1 no. 2 (2013), 125–147. DOI MR...
    • A. K. Asboei and S. S. Salehi, Some results on the main supergraph of finite groups, Algebra Discrete Math. 30 no. 2 (2020), 172–178. DOI...
    • J. A. Bondy and U. S. R. Murty, Graph theory, Grad. Texts in Math. 244, Springer, New York, 2008. MR Zbl
    • I. Chakrabarty, S. Ghosh, and M. K. Sen, Undirected power graphs of semigroups, Semigroup Forum 78 no. 3 (2009), 410–426. DOI MR Zbl
    • S. J. Curran and J. A. Gallian, Hamiltonian cycles and paths in Cayley graphs and digraphs—a survey, Discrete Math. 156 no. 1-3 (1996), 1–18....
    • J. A. Gallian, Contemporary abstract algebra, fourth ed., Narosa, New Delhi, 1999. Zbl
    • A. Hamzeh and A. R. Ashrafi, Automorphism groups of supergraphs of the power graph of a finite group, European J. Combin. 60 (2017), 82–88....
    • A. Hamzeh and A. R. Ashrafi, Spectrum and L-spectrum of the power graph and its main supergraph for certain finite groups, Filomat 31 no....
    • A. Hamzeh and A. R. Ashrafi, The order supergraph of the power graph of a finite group, Turkish J. Math. 42 no. 4 (2018), 1978–1989. DOI MR...
    • A. Hamzeh and A. R. Ashrafi, Some remarks on the order supergraph of the power graph of a finite group, Int. Electron. J. Algebra 26 (2019),...
    • A. Kelarev, Ring constructions and applications, Series in Algebra 9, World Scientific, River Edge, NJ, 2002. MR Zbl
    • A. Kelarev, Graph algebras and automata, Monogr. Textbooks Pure Appl. Math. 257, Marcel Dekker, New York, 2003. MR Zbl
    • A. Kelarev, Labelled Cayley graphs and minimal automata, Australas. J. Combin. 30 (2004), 95–101. MR Zbl
    • A. Kelarev, J. Ryan, and J. Yearwood, Cayley graphs as classifiers for data mining: the influence of asymmetries, Discrete Math. 309 no. 17...
    • A. Kumar, L. Selvaganesh, P. J. Cameron, and T. Tamizh Chelvam, Recent developments on the power graph of finite groups—a survey, AKCE Int....
    • A. Kumar, L. Selvaganesh, and T. Tamizh Chelvam, Structural properties of super power graph of dihedral group D2n, preprint, 2021.
    • C. H. Li, On isomorphisms of finite Cayley graphs—a survey, Discrete Math. 256 no. 1-2 (2002), 301–334. DOI MR Zbl
    • X. Ma and H. Su, On the order supergraph of the power graph of a finite group, Ric. Mat. 71 no. 2 (2022), 381–390. DOI MR Zbl
    • M. Mirzargar, A survey on the automorphism groups of the commuting graphs and power graphs, Facta Univ. Ser. Math. Inform. 34 no. 4 (2019),...
    • D. Witte and J. A. Gallian, A survey: Hamiltonian cycles in Cayley graphs, Discrete Math. 51 no. 3 (1984), 293–304. DOI MR Zbl

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno