Ir al contenido

Documat


A high-accuracy compact finite difference scheme for time-fractional diffusion equations

  • Xindong Zhang [1] ; Hanxiao Wang [2] ; Ziyang Luo [4] ; Leilei Wei [3]
    1. [1] Guizhou University of Finance and Economics

      Guizhou University of Finance and Economics

      China

    2. [2] Xinjiang Normal University

      Xinjiang Normal University

      China

    3. [3] Henan University of Technology

      Henan University of Technology

      China

    4. [4] School of Mathematics and Physics, Xinjiang Institute of Engineering, Urumqi, 830023, People’s Republic of China
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 68, Nº. 2, 2025, págs. 589-609
  • Idioma: inglés
  • DOI: 10.33044/revuma.4665
  • Enlaces
  • Resumen
    • We propose a compact finite difference (CFD) scheme for the solution of time-fractional diffusion equations (TFDE) with the Caputo–Fabrizio derivative. The Caputo–Fabrizio derivative is discussed in the time direction and is discretized by a special discrete scheme. The compact difference operator is introduced in the space direction. We prove the unconditional stability and convergence of the proposed scheme. We show that the convergence order is O(τ3 + h4), where τ and h are the temporal stepsize and spatial stepsize, respectively. Our main purpose is to show that the Caputo–Fabrizio derivative without singular term can improve the accuracy of the discrete scheme.

      Numerical examples demonstrate the efficiency of the proposed method, and the numerical results agree well with the theoretical predictions.

  • Referencias bibliográficas
    • S. Abbas, M. Benchohra, and J. J. Nieto, Caputo–Fabrizio fractional differential equations with non instantaneous impulses, Rend. Circ. Mat....
    • T. Akman, B. Yıldız, and D. Baleanu, New discretization of Caputo–Fabrizio derivative, Comput. Appl. Math. 37 no. 3 (2018), 3307–3333. DOI...
    • A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties,...
    • A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?, Chaos...
    • A. Atangana and J. Gomez-Aguilar ´ , Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more...
    • M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differentiation Appl. 1 no. 2...
    • J. A. M. Carrer, B. S. Solheid, J. Trevelyan, and M. Seaid, A boundary element method formulation based on the Caputo derivative for the solution...
    • M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys. 228 no. 20 (2009), 7792–7804. DOI MR Zbl
    • A. Daraghmeh, N. Qatanani, and A. Saadeh, Numerical solution of fractional differential equations, Appl. Math. (Irvine) 11 (2020), 1100–1115....
    • H. Dehestani and Y. Ordokhani, Pell–Lucas discretization method for finding the solution of Caputo–Fabrizio time-fractional diffusion equations,...
    • Z.-W. Fang, H.-W. Sun, and H. Wang, A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion...
    • M. Fardi and J. Alidousti, A Legendre spectral-finite difference method for Caputo– Fabrizio time-fractional distributed-order diffusion equation,...
    • G.-H. Gao and H.-W. Sun, Three-point combined compact difference schemes for timefractional advection-diffusion equations with smooth solutions,...
    • R. Garrappa, Numerical solution of fractional differential equations: A survey and a software tutorial, Mathematics 6 no. 2 (2018), Paper...
    • R. Gorenflo, Y. Luchko, and M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces, Fract. Calc. Appl. Anal. 18...
    • R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, Time fractional diffusion: A discrete random walk approach, Nonlinear Dynam. 29 no....
    • B. Guo, X. Pu, and F. Huang, Fractional partial differential equations and their numerical solutions, World Scientific, Hackensack, NJ, 2015....
    • S. Guo, L. Mei, Y. Li, and Y. Sun, The improved fractional sub-equation method and its applications to the space-time fractional differential...
    • M. S. Hashemi, A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative, Chaos Solitons...
    • R. Hilfer (ed.), Applications of fractional calculus in physics, World Scientific, Singapore, 2000. DOI MR Zbl
    • J. Hristov, Derivatives with non-singular kernels from the Caputo–Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion...
    • D. Hu and X. Cao, A fourth-order compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equation, Int....
    • A. Jannelli, M. Ruggieri, and M. P. Speciale, Numerical solutions of space-fractional advection-diffusion equations with nonlinear source...
    • A. A. Kosov and E. I. Semenov ` , Exact solutions of the nonlinear diffusion equation, Sib. Math. J. 60 no. 1 (2019), 93–107, translation...
    • S. Kumar, A. Kumar, B. Samet, J. F. Gomez-Aguilar ´ , and M. S. Osman, A chaos study of tumor and effector cells in fractional tumor-immune...
    • Y. Li, F. Liu, I. W. Turner, and T. Li, Time-fractional diffusion equation for signal smoothing, Appl. Math. Comput. 326 (2018), 108–116....
    • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 no. 2 (2007),...
    • J. Liu, J. Zhang, and X. Zhang, Semi-discretized numerical solution for time fractional convection-diffusion equation by RBF-FD, Appl. Math....
    • Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal. 15 no. 1 (2012),...
    • V. Mehandiratta and M. Mehra, A difference scheme for the time-fractional diffusion equation on a metric star graph, Appl. Numer. Math. 158...
    • H. Mohammadi, S. Kumar, S. Rezapour, and S. Etemad, A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to...
    • K. M. Owolabi and A. Atangana, Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative...
    • I. Podlubny, Fractional differential equations, Math. Sci. Eng. 198, Academic Press, San Diego, CA, 1999. MR Zbl
    • M. Ran and C. Zhang, New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed...
    • M. Shafiq, F. A. Abdullah, M. Abbas, A. Sm Alzaidi, and M. B. Riaz, Memory effect analysis using piecewise cubic B-spline of time fractional...
    • J. Shi and M. Chen, A second-order accurate scheme for two-dimensional space fractional diffusion equations with time Caputo–Fabrizio fractional...
    • Z. Soori and A. Aminataei, Two new approximations to Caputo–Fabrizio fractional equation on non-uniform meshes and its applications, Iran....
    • H. Sun, A. Chang, Y. Zhang, and W. Chen, A review on variable-order fractional differential equations: Mathematical foundations, physical...
    • M. Taghipour and H. Aminikhah, A new compact alternating direction implicit method for solving two dimensional time fractional diffusion equation...
    • Z. Wang and S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave...
    • Y. Yan, K. Pal, and N. J. Ford, Higher order numerical methods for solving fractional differential equations, BIT 54 no. 2 (2014), 555–584....
    • H. Ye, F. Liu, and V. Anh, Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains, J....
    • P. Zhang and H. Pu, A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation, Numer. Algorithms 76...
    • X. Zhao, Z.-Z. Sun, and Z.-P. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schr¨odinger equation,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno