Ir al contenido

Documat


Linear functionals and Δ -coherent pairs of the second kind

  • Diego Dominici [1] ; Francisco Marcellán [2]
    1. [1] Johannes Kepler University of Linz

      Johannes Kepler University of Linz

      Linz, Austria

    2. [2] Universidad Carlos III de Madrid

      Universidad Carlos III de Madrid

      Madrid, España

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 68, Nº. 2, 2025, págs. 405-422
  • Idioma: inglés
  • DOI: 10.33044/revuma.4349
  • Enlaces
  • Resumen
    • We classify all the ∆-coherent pairs of measures of the second kind on the real line. We obtain five cases, corresponding to all the families of discrete semiclassical orthogonal polynomials of class s ≤ 1.

  • Referencias bibliográficas
    • I. Area, E. Godoy, and F. Marcellan´ , Classification of all ∆-coherent pairs, Integral Transform. Spec. Funct. 9 no. 1 (2000), 1–18. DOI...
    • I. Area, E. Godoy, and F. Marcellan´ , Inner products involving differences: The Meixner– Sobolev polynomials, J. Difference Equ. Appl. 6...
    • I. Area, E. Godoy, and F. Marcellan´ , ∆-coherent pairs and orthogonal polynomials of a discrete variable, Integral Transforms Spec. Funct....
    • I. Area, E. Godoy, F. Marcellan´ , and J. J. Moreno-Balcazar ´ , Ratio and Plancherel– Rotach asymptotics for Meixner–Sobolev orthogonal polynomials,...
    • I. Area, E. Godoy, F. Marcellan´ , and J. J. Moreno-Balcazar ´ , ∆-Sobolev orthogonal polynomials of Meixner type: Asymptotics and limit relation,...
    • T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications 13, Gordon and Breach, New York-London-Paris, 1978....
    • A. M. Delgado and F. Marcellan´ , Companion linear functionals and Sobolev inner products: A case study, Methods Appl. Anal. 11 no. 2 (2004),...
    • D. Dominici, Recurrence relations for the moments of discrete semiclassical orthogonal polynomials, J. Class. Anal. 20 no. 2 (2022), 143–180....
    • D. Dominici and F. Marcellan´ , Discrete semiclassical orthogonal polynomials of class one, Pacific J. Math. 268 no. 2 (2014), 389–411. DOI...
    • D. Dominici and F. Marcellan´ , Discrete semiclassical orthogonal polynomials of class 2, in Orthogonal polynomials: Current trends and applications,...
    • D. Dominici and J. J. Moreno-Balcazar ´ , Asymptotic analysis of a family of Sobolev orthogonal polynomials related to the generalized Charlier...
    • A. J. Duran´ , Christoffel transform of classical discrete measures and invariance of determinants of classical and classical discrete polynomials,...
    • A. J. Duran´ and M. D. de la Iglesia, Constructing bispectral orthogonal polynomials from the classical discrete families of Charlier, Meixner...
    • L. Fernandez ´ , F. Marcellan´ , T. E. Perez ´ , and M. A. Pinar ˜ , Sobolev orthogonal polynomials and spectral methods in boundary value...
    • A. G. Garc´ıa, F. Marcellan´ , and L. Salto, A distributional study of discrete classical orthogonal polynomials, J. Comput. Appl. Math. 57...
    • J. C. Garc´ıa-Ardila, F. Marcellan´ , and M. E. Marriaga, From standard orthogonal polynomials to Sobolev orthogonal polynomials: The role...
    • M. Hancco Suni, G. A. Marcato, F. Marcellan´ , and A. Sri Ranga, Coherent pairs of moment functionals of the second kind and associated orthogonal...
    • A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna, On polynomials orthogonal with respect to certain Sobolev inner products, J....
    • A. Iserles, J. M. Sanz-Serna, P. E. Koch, and S. P. Nørsett, Orthogonality and approximation in a Sobolev space, in Algorithms for approximation,...
    • R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues, Springer Monogr. Math., Springer,...
    • F. Marcellan´ , T. E. Perez ´ , and M. A. Pinar ˜ , Orthogonal polynomials on weighted Sobolev spaces: The semiclassical case, Ann. Numer....
    • F. Marcellan´ and J. Petronilho, Orthogonal polynomials and coherent pairs: The classical case, Indag. Math. (N.S.) 6 no. 3 (1995), 287–307....
    • F. Marcellan´ and L. Salto, Discrete semi-classical orthogonal polynomials, J. Difference Equ. Appl. 4 no. 5 (1998), 463–496. DOI MR Zbl
    • F. Marcellan´ and Y. Xu, On Sobolev orthogonal polynomials, Expo. Math. 33 no. 3 (2015), 308–352. DOI MR Zbl
    • H. G. Meijer, Determination of all coherent pairs, J. Approx. Theory 89 no. 3 (1997), 321–343. DOI MR Zbl
    • J. J. Moreno-Balcazar ´ , ∆-Meixner–Sobolev orthogonal polynomials: Mehler–Heine type formula and zeros, J. Comput. Appl. Math. 284 (2015),...
    • A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical orthogonal polynomials of a discrete variable, Springer Ser. Comput. Phys., Springer,...
    • A. Ronveaux and L. Salto, Discrete orthogonal polynomials—polynomial modification of a classical functional, J. Difference Equ. Appl. 7 no....
    • A. Zhedanov, Rational spectral transformations and orthogonal polynomials, J. Comput. Appl. Math. 85 no. 1 (1997), 67–86. DOI MR Zbl

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno