Ir al contenido

Documat


Pre-weight structures, pseudo-identities and canonical derived equivalences

  • Xiao-Wu Chen [1]
    1. [1] University of Science and Technology of China

      University of Science and Technology of China

      China

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 5, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01106-w
  • Enlaces
  • Resumen
    • We introduce the notion of pre-weight structure on a triangulated category and study the corresponding pseudo-identities.We propose the notion of canonical derived equivalence between algebras that are not necessarily flat, which is associated to a tilting complex. In the flat situation, canonical derived equivalences coincide with standard derived equivalences in the sense of Rickard. We prove that any derived equivalence starting from a hereditary algebra is canonical. The key tool is a general factorization theorem: any derived equivalence is uniquely factorized as a pseudo-identity followed by a canonical derived equivalence.

  • Referencias bibliográficas
    • 1. Auslander, M., Reiten, I., Smalø, S.O.: Representation Theory of Artin Algebras, Cambridge Studies in Adv. Math. 36, Cambridge Univ. Press,...
    • 2. Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers, Astérisque 100. Soc. Math. France, Paris (1982)
    • 3. Bondal, A.I.: Representations of associative algebras and coherent sheaves. Math. USSR Izv. 34, 23–42 (1990)
    • 4. Bondal, A.I., Kapranov, M.M.: Representable functors, Serre functors, and mutations. Math. USSR Izv. 35(3), 519–541 (1990)
    • 5. Bondarko, M.V.: Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)....
    • 6. Bökstedt, M., Neeman, A.: Homotopy limits in triangulated categories. Compos. Math. 86, 209–234 (1993)
    • 7. Chen, X., Chen, X.W.: Liftable derived equivalences and objective categories. Bull. London Math. Soc. 52, 816–834 (2020)
    • 8. Chen, X.W., Lin, Z., Zhou, Y.: The extensions of t-structures. Ark. Mat. 61, 323–342 (2023)
    • 9. Chen, X.W., Ye, Y.: The D-standard and K-standard categories. Adv. Math. 333, 159–193 (2018)
    • 10. Chen, X.W., Wang, Z.: Differential graded enhancements of singularity categories, in: Representations of Algebras and Related Topics,...
    • 11. Chen, Y.: Derived equivalences between matrix subrings and their applications. J. Algebra 370, 113– 132 (2012)
    • 12. Cline, E., Parshall, B., Scott, L.: Derived categories and Morita theory. J. Algebra 104, 397–409 (1986)
    • 13. Drinfeld, V.: DG quotients of DG categories. J. Algebra 272, 643–691 (2004)
    • 14. Huybrechts, D.: Fourier-Mukai Transformations in Algebraic Geometry. Clarendon Press, Oxford, Oxford Math. Monogr. (2006)
    • 15. Jorgensen, P., Kato, K.: Triangulated subcategories of extensions, stable t-structures, and triangles of recollements. J. Pure Appl. Algebra...
    • 16. Keller, B.: A remark on tilting theory and DG algebras. Manuscripta Math. 79(3–4), 247–252 (1993)
    • 17. Keller, B.: Deriving DG categories. Ann. Sci. École Norm. Sup. (4) 27(1), 63–102 (1994)
    • 18. Keller, B.: Bimodule complexes via strong homotopy actions. Algebr. Represent. Theor. 3, 357–376 (2000)
    • 19. Koenig, S., Zimmermann, A.: Tilting hereditary orders. Comm. Algebra 24(6), 1897–1913 (1996)
    • 20. Krause, H.: Derived categories, resolutions and Brown representability, In: Interactions between Homotopy Theory and Algebra, 101–139,...
    • 21. Miyachi, J.I.: Derived Categories with Applications to Representations of Algebras, Chiba Univ., (2000), available at: http://www.u-gakugei.ac.jp/∼miyachi/seminar.html
    • 22. Miyachi, J.I., Yekutieli, A.: Derived Picard groups of finite-dimensional hereditary algebras. Compos. Math. 129, 341–368 (2001)
    • 23. Pauksztello, D.: Compact corigid objects in triangulated categories and co-t-structures. Cent. Eur. J. Math. 6, 25–42 (2008)
    • 24. Positeselski, L., Schnuerer, M.: Unbounded derived categories of small and big modules: Is the natural functor fully faithful? J. Pure...
    • 25. Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc. (2) 39, 436–456 (1989)
    • 26. Rickard, J.: Derived equivalences as derived functors. J. Lond. Math. Soc. (2) 43, 37–48 (1991)
    • 27. Rickard, J.: Splendid equivalences: derived categories and permutation modules. Proc. Lond. Math. Soc. 3(2), 331–358 (1996)
    • 28. Rouquier, R.: Block theory via stable and Rickard equivalences, In: Modular Representation Theory of Finite Groups, New York De Gruyter,...
    • 29. Töen, B.: The homotopy theory of dg-categories and derived Morita theory. Invent. Math. 167, 615–667 (2007)
    • 30. Xi, C.: Derived equivalences of algebras. Bull. London Math. Soc. 50, 945–985 (2018)
    • 31. Yekutieli, A.: Dualizing complexes, Morita equivalence and the derived Picard group of a ring. J. London Math. Soc. (2) 60, 723–746 (1999)
    • 32. Zimmermann, A.: Representation Theory. Springer International Publishing, Switzerland, A Homological Algebra Point of View (2014)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno