Ir al contenido

Documat


Associative submanifolds of squashed 3-Sasakian manifolds

  • Gavin Ball [1] ; Jesse Madnick [2]
    1. [1] University of Missouri

      University of Missouri

      Township of Columbia, Estados Unidos

    2. [2] Seton Hall University

      Seton Hall University

      Township of South Orange Village, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 5, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01078-x
  • Enlaces
  • Resumen
    • Every compact 3-Sasakian 7-manifold M admits a canonical 2-parameter family of co-closed G2-structures ϕa,b for a, b > 0, as well as a foliation by ϕa,b-associative 3-folds whose leaf space X is a positive quaternion-Kähler 4-orbifold. We prove that associative 3-folds in (M, ϕa,b) that are ruled by a certain type of geodesic are in correspondence with pseudo-holomorphic curves in the almost-complex 8-manifold Z × S2, where Z is the twistor space of X equipped with its strict nearly-Kähler structure. As an application, we construct infinitely many topological types of nontrivial, compact associative 3-folds in the squashed 7-spheres (S7, ϕa,b) and squashed exceptional Aloff-Wallach spaces (N1,1, ϕa,b). Topologically, our examples are circle bundles over a genus g surface, for any g ≥ 0.

  • Referencias bibliográficas
    • 1. Agricola, I., Friedrich, T.: 3-Sasakian manifolds in dimension seven, their spinors and G2-structures. J. Geom. Phys. 60(2), 326–332 (2010)
    • 2. Ball, G.: Seven-dimensional geometries with special torsion. PhD thesis, Duke University, (2019)
    • 3. Ball,G., Madnick, J.: The mean curvature of first-order submanifolds in exceptional geometries with torsion. Annals of Global Analysis...
    • 4. Ball, G., Madnick, J.: Associative submanifolds of the Berger space. Comm. Anal. Geom., To appear
    • 5. Ball, G., Oliveira, G.: Gauge theory on Aloff-Wallach spaces. Geom. Topol. 23(2), 685–743 (2019)
    • 6. Bär, C.: Real Killing spinors and holonomy. Commun. Math. Phys. 154(3), 509–521 (1993)
    • 7. Charles, P.: Boyer and Krzysztof Galicki. Sasakian geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford (2008)
    • 8. Boyer, Charles P., Galicki, K., Mann, B. M.: The geometry and topology of 3-Sasakian manifolds. J. reine angew. Math., (1994)
    • 9. Bryant, R., Harvey, R.: Submanifolds in hyper-Kähler geometry. J. Amer. Math. Soc. 2(1), 1–31 (1989)
    • 10. Bryant, R.L.: Conformal and minimal immersions of compact surfaces into the 4-sphere. Journal of Differential Geometry 17(3), 455–473...
    • 11. Shiing-Shen Chern and Jon Gordon Wolfson: Minimal Surfaces by Moving Frames. Am. J. Math. 105(1), 59–83 (1983)
    • 12. Donaldson, S. K., Thomas, R. P.: Gauge theory in higher dimensions. In The geometric universe (Oxford, 1996), pages 31–47. Oxford Univ....
    • 13. Donaldson, S., Segal, Ed.: Gauge theory in higher dimensions, II. In Surveys in differential geometry. Volume XVI. Geometry of special...
    • 14. Eells, J., Wood, J.C.: Harmonic Maps from Surfaces to Complex Projective Spaces. Adv. Math. 49(3), 217–263 (1983)
    • 15. Fox, D.: Cayley cones ruled by 2-planes: desingularization and implications of the twistor fibration. Comm. Anal. Geom. 16(5), 937–968...
    • 16. Friedrich, T., Kath, I., Moroianu, A., Semmelmann, U.: On nearly parallel G2-structures. J. Geom. Phys. 23(3–4), 259–286 (1997)
    • 17. Galicki, K., Salamon, S.: Betti numbers of 3-Sasakian manifolds. Geom. Dedicata. 63(1), 45–68 (1996)
    • 18. Griffiths, P., Harris, J.: Principles of algebraic geometry. Pure and Applied Mathematics. WileyInterscience [John Wiley & Sons],...
    • 19. Harvey, R., Blaine, H., Lawson.: Calibrated geometries. Acta Math. 148, 47–157 (1982)
    • 20. Haydys, A.: G2 instantons and the Seiberg-Witten monopoles. In Gromov-Witten theory, gauge theory and dualities, volume 48 of Proc. Centre...
    • 21. Jensen, G.R.: Einstein metrics on principal fibre bundles. Journal of Differential Geometry 8(4), 599– 614 (1973)
    • 22. Jordan, C.: Essai sur la géométrie à n dimensions. Bull. Soc. Math. France 3, 103–174 (1875)
    • 23. Joyce, D.: onjectures on counting associative 3-folds in G2-manifolds. In Modern geometry: a celebration of the work of Simon Donaldson,...
    • 24. Kawai, K.: Deformations of homogeneous associative submanifolds in nearly parallel G2-manifolds. arXiv preprint arXiv:1407.8046, (2014)
    • 25. Kawai, K.: Some associative submanifolds of the squashed 7-sphere. Q. J. Math. 66(3), 861–893 (2015)
    • 26. Kawai, K.: Second-order deformations of associative submanifolds in nearly parallel G2-manifolds. Q. J. Math. 69(1), 241–270 (2018)
    • 27. Lotay, J.D.: Associative submanifolds of the 7-sphere. Proc. Lond. Math. Soc. 105(6), 1183–1214 (2012)
    • 28. Lotay, J.D., Oliveira, G.: Examples of deformed G2-instantons/Donaldson-Thomas connections. Ann. Inst. Fourier (Grenoble) 72(1), 339–366...
    • 29. Loubeau, E., Moreno, A.J., SáEarp, H.N., Saavedra, J.: Harmonic Sp(2)-invariant G2-structures on the 7-sphere. The Journal of Geometric...
    • 30. Mashimo, K.: Homogeneous totally real submanifolds of S6. Tsukuba Journal of Mathematics 9(1), 185–202 (1985)
    • 31. Moore, K.: Deformations of conically singular Cayley submanifolds. The Journal of Geometric Analysis 29(3), 2147–2216 (2019)
    • 32. Moreno, A. J., Sá Earp, H.N.: The Weitzenbock formula for the Fueter-Dirac operator. Comm. Anal. Geom., (2022)
    • 33. Singhal, R.: Deformations of G2-instantons on nearly G2 manifolds. Annals of Global Analysis and Geometry, To appear
    • 34. Waldron, A.: G2-instantons on the 7-sphere. arXiv preprint arXiv:2002.02386, (2020)
    • 35. Walpuski, T.: G2-instantons, associative submanifolds and fueter sections. Comm. Anal. Geom. 25(4), 847–893 (2017)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno