Ir al contenido

Documat


Fixed-point statistics from spectral measures on tensor envelope categories

  • Arthur Forey [2] ; Javier Fresán [3] ; Emmanuel Kowalski [1]
    1. [1] Swiss Federal Institute of Technology in Zurich

      Swiss Federal Institute of Technology in Zurich

      Zürich, Suiza

    2. [2] Univ. Lille, CNRS, France
    3. [3] Sorbonne Université and Université Paris, France
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 5, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01091-0
  • Enlaces
  • Resumen
    • We prove old and new convergence statements for fixed-points statistics and characters of symmetric groups using tensor envelope categories, such as the Deligne–Knop category of representations of the “symmetric group” St for an indeterminate t.We also speculate on a generalization of Chebotarev’s density theorem to pseudopolynomials

  • Referencias bibliográficas
    • 1. Berg, C.: The cube of a normal distribution is indeterminate. Ann. Probab. 16(2), 910–913 (1988)
    • 2. Billingsley, P.: Probability and measure, Third edition, Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons...
    • 3. Boas, R.P., Jr.: The Stieltjes moment problem for functions of bounded variation. Bull. Amer. Math. Soc. 45(6), 399–404 (1939)
    • 4. Bourbaki, N.: Éléments de mathématique. Théories spectrales. Chapitres 3 à 5. Springer, Cham (2023)
    • 5. Christiansen, J.: Indeterminate moment problems within the Askey-scheme, Ph.D. Thesis, (2004). Available at https://web.math.ku.dk/noter/filer/phd04jsc.pdf
    • 6. Church, T., Ellenberg, J.S., Farb, B.: FI-modules and stability for representations of symmetric groups. Duke Math. J. 164(9), 1833–1910...
    • 7. de Moivre, A.: The doctrine of chance, Third edition, A. Millar, (1756). Available at https://archive. org/details/doctrineofchance00moiv/
    • 8. de Montmort, P. R.: Essay d’analyse sur les jeux de hazard, Second edition, Jacques Quillau, (1713). Available at https://gallica.bnf.fr/ark:/12148/bpt6k110519q/
    • 9. Deligne, P.: Catégories tannakiennes. The Grothendieck Festschrift II, 111–195 (1990)
    • 10. Deligne, P.: La catégorie des représentations du groupe symétrique St , lorsque t n’est pas un entier naturel. Algebraic groups and homogeneous...
    • 11. Diaconis, P., Shahshahani, M.: On the eigenvalues of random matrices. J. Appl. Probab. 31A, 49–62 (1994). (Studies in applied probability)
    • 12. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories, Mathematical Surveys and Monographs, vol. 205. American Mathematical...
    • 13. Fulman, J., Stanton, D.: On the distribution of the number of fixed vectors for the finite classical groups. Ann. Comb. 20(4), 755–773...
    • 14. Hall, R.R.: On pseudo-polynomials. Mathematika 18, 71–77 (1971)
    • 15. Harman, N., Snowden, A.: Oligomorphic groups and tensor categories. Preprint, arXiv:2204.04526
    • 16. Heath-Brown, D.R.: The size of Selmer groups for the congruent number problem. II. Invent. math. 118(2), 331–370 (1994). (With an appendix...
    • 17. Katz, N.M.: Exponential sums and differential equations, Annals of Mathematics Studies, vol. 124. Princeton University Press, Princeton,...
    • 18. Knop, F.: Tensor envelopes of regular categories. Adv. Math. 214(2), 571–617 (2007)
    • 19. Knop, F.: The subobject decomposition in enveloping tensor categories. Indag. Math. (N.S.) 33(1), 238–254 (2022)
    • 20. Knop, F.: Multiplicities and dimensions in enveloping tensor categories. Int. Math. Res. Not. IMRN 9, 7776–7797 (2024)
    • 21. Kowalski, E., Soundararajan, K.: Equidistribution from the Chinese remainder theorem. Adv. Math. 385, 107776 (2021)
    • 22. Kronecker, L.: Über die Irreductibilität von Gleichungen, Monatsberichte der Königlich Preuss. Akad. der Wiss. Berlin 155-162 (1880)
    • 23. Larsen, M.: The normal distribution as a limit of generalized Sato–Tate measures. Unpublished preprint from the mid 1990’s, available...
    • 24. Macdonald, I. G.: Symmetric functions and Hall polynomials, Second edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford...
    • 25. Pitman, J.: Some probabilistic aspects of set partitions. Amer. Math. Monthly 104(3), 201–209 (1997)
    • 26. Schmüdgen, K.: The moment problem, Grad. Texts in Math., vol. 277. Springer, Cham (2017)
    • 27. Takács, L.: The problem of coincidences, Arch. Hist. Exact Sci. 21(3), 229-244 (1979/80)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno