Ir al contenido

Documat


Non-linear proper Fredholm maps and the stable homotopy groups of spheres

  • Thomas O. Rot [1] ; Lauran Toussaint [1]
    1. [1] VU University Amsterdam

      VU University Amsterdam

      Países Bajos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 5, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01093-y
  • Enlaces
  • Resumen
    • We classify non-linear proper Fredholm maps between Hilbert spaces, up to proper homotopy, in terms of the stable homotopy groups of spheres. We show that there is a surjective map from the stable homotopy groups of spheres to the set of non-linear proper Fredholm maps up to proper homotopy and determine the non-trivial kernel.

      We also discuss the case of oriented non-linear proper Fredholm maps which are in bijection with the stable homotopy groups of spheres.

  • Referencias bibliográficas
    • 1. Abbondandolo, A., Majer, P.: Infinite dimensional grassmannians. J. Operator Theory 61(1), 19–62 (2009)
    • 2. Abbondandolo, A., Rot, T.O.: On the homotopy classification of proper fredholm maps into a hilbert space. J. Reine Angew. Math. 759, 161–200...
    • 3. Abbondandolo, A., Rot, T.O.: The homotopy classification of proper fredholm maps of index one. Topol. Methods Nonlinear Anal. 59(2A), 585–621...
    • 4. Atiyah, M.F.: K-theory. W. A. Benjamin, Inc., New York-Amsterdam, (1967). Lecture notes by D. W. Anderson
    • 5. Bauer, S., Furuta, M.: A stable cohomotopy refinement of seiberg-witten invariants. I. Invent. Math. 155(1), 1–19 (2004)
    • 6. Berger, M.S.: Nonlinearity and functional analysis. Pure and Applied Mathematics. Academic Press [Harcourt Brace Jovanovich, Publishers],...
    • 7. Davis, J.F., Kirk, P.: Lecture notes in algebraic topology. Graduate Studies in Mathematics, vol. 35. American Mathematical Society, Providence,...
    • 8. Elworthy, K.D., Tromba, A.J.: Differential structures and Fredholm maps on Banach manifolds. In Global Analysis (Proc. Sympos. Pure Math.,...
    • 9. Ge˛ba, K.: Fredholm σ-proper maps of banach spaces. Fund. Math. 64, 341–373 (1969)
    • 10. Jänich, K.: Vektorraumbündel und der raum der fredholm-operatoren. Math. Ann. 161, 129–142 (1965)
    • 11. Kuiper, N.H.: The homotopy type of the unitary group of hilbert space. Topology 3, 19–30 (1965)
    • 12. Nishida, G.: The nilpotency of elements of the stable homotopy groups of spheres. J. Math. Soc. Japan 25, 707–732 (1973)
    • 13. Quillen, D.: Determinants of cauchy-riemann operators on riemann surfaces. Funktsional. Anal. i. Prilozhen. 19(1), 37–41 (1985)
    • 14. Rot, T.O.: Homotopy classes of proper maps out of vector bundles. Arch. Math. (Basel) 114(1), 107– 117 (2020)
    • 15. Švarc, A.S.: On the homotopic topology of banach spaces. Dokl. Akad. Nauk SSSR 154, 61–63 (1964)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno