Ir al contenido

Documat


Matrix evaluations of noncommutative rational functions and Waring problems

  • Matej Brešar [1] ; Jurij Volˇciˇc [2]
    1. [1] University of Ljubljana

      University of Ljubljana

      Eslovenia

    2. [2] University of Auckland

      University of Auckland

      Nueva Zelanda

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 5, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01098-7
  • Enlaces
  • Resumen
    • Let r be a nonconstant noncommutative rational function in m variables over an algebraically closed field K of characteristic 0. We show that for n large enough, there exists an X ∈ Mn(K)m such that r(X) has n distinct and nonzero eigenvalues. This result is used to study the linear and multiplicative Waring problems for matrix algebras. Concerning the linear problem, we show that for n large enough, every matrix in sln(K) can be written as r(Y ) − r(Z) for some Y , Z ∈ Mn(K)m. We also discuss variations of this result for the case where r is a noncommutative polynomial. Concerning the multiplicative problem, we show, among other results, that if f and g are nonconstant polynomials, then, for n large enough, every nonscalar matrix in GLn(K) can be written as f (Y ) · g(Z) for some Y , Z ∈ Mn(K)m.

  • Referencias bibliográficas
    • 1. Albert, A., Muckenhoupt, B.: On matrices of trace 0. Michigan Math. J. 1, 1–3 (1957)
    • 2. Alfonsín, J.L.R.: The diophantine Frobenius problem. Oxford University Press, Oxford (2005)
    • 3. Amitsur, S.A.: Rational identities and applications to algebra and geometry. J. Algebra 3, 304–359 (1966)
    • 4. Augat, M., Helton, J.W., Klep, I., McCullough, S.: Bianalytic Maps Between Free Spectrahedra. Math. Ann. 371, 883–959 (2018)
    • 5. Bergman, G.M.: Rational relations and rational identities in division rings. I. J. Algebra 43, 252–266 (1976)
    • 6. Berstel, J., Reutenauer, C.: Noncommutative rational series with applications, Encyclopedia of Mathematics and its Applications 137. Cambridge...
    • 7. Bessaga, C., Pełczy ´nski, A.: Banach spaces non-isomorphic to their Cartesian squares. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys....
    • 8. Botha, J.D.: Products of diagonalizable matrices. Linear Algebra Appl. 273, 65–82 (1998)
    • 9. Brešar, M.: Commutators and images of noncommutative polynomials. Adv. Math. 374, 107346 (2020)
    • 10. Brešar, M., Klep, I.: Values of noncommutative polynomials, Lie skew-ideals and tracial Nullstellensätze. Math. Res. Lett. 16, 605–626...
    • 11. Brešar, M., Šemrl, P.: The Waring problem for matrix algebras. Israel J. Math. 253, 381–405 (2023)
    • 12. Brešar, M., Šemrl, P.: The Waring problem for matrix algebras, II. Bull. London Math. Soc. 55, 1880– 1889 (2023)
    • 13. Chen, Q.: On Panja-Prasad conjecture, arXiv: 2306.15118
    • 14. Cohn, P.M.: Free Ideal Rings and Localization in General Rings, New Mathematical Monographs 3. Cambridge University Press, Cambridge (2006)
    • 15. Cohn, P.M., Reutenauer, C.: On the construction of the free field. Internat. J. Algebra Comput. 9, 307–323 (1999)
    • 16. Collins, B., Mai, T., Miyagawa, A., Parraud, F., Yin, S.: Convergence for noncommutative rational functions evaluated in random matrices....
    • 17. Derksen, H., Makam, V.: Polynomial degree bounds for matrix semi-invariants. Adv. Math. 310, 44–63 (2017)
    • 18. Gelfand, I.M., Gelfand, S., Retakh, V., Wilson, R.L.: Quasideterminants. Adv. Math. 193, 56–141 (2005)
    • 19. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, resultants, and multidimensional determinants. Birkhäuser, Boston (1994)
    • 20. Halmos, P.R.: Commutators of operators II. Amer. J. Math. 76, 191–198 (1954)
    • 21. Harris, J.: Algebraic geometry: a first course, Graduate Texts in Mathematics 133. Springer-Verlag, New York (1992)
    • 22. Helton, J.W., Mai, T., Speicher, R.: Applications of realizations (aka linearizations) to free probability. J. Funct. Anal. 274, 1–79...
    • 23. Helton, J.W., McCullough, S., Vinnikov, V.: Noncommutative convexity arises from linear matrix inequalities. J. Funct. Anal. 240, 105–191...
    • 24. Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press, London (1985)
    • 25. Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov, V.: Noncommutative rational functions, their differencedifferential calculus and realizations,...
    • 26. Kalyuzhnyi-Verbovetskyi, D.S., Vinnikov, V.: Foundations of free noncommutative function theory, Mathematical Surveys and Monographs 199....
    • 27. Kanel-Belov, A., Malev, S., Rowen, L.: Power-central polynomials on matrices. J. Pure Appl. Algebra 220, 2164–2176 (2016)
    • 28. Kanel-Belov, A., Razavinia, F., Zhang, W.: Centralizers in free associative algebras and generic matrices. Mediterr. J. Math. 20(2), 85...
    • 29. Larsen, M., Shalev, A., Tiep, P.H.: The Waring problem for finite simple groups. Ann. Math. 174, 1885–1950 (2011)
    • 30. Makar-Limanov, L.: Algebraically closed skew fields. J. Algebra 93, 117–135 (1985)
    • 31. Mesyan, Z.: Commutator rings. Bull. Austral. Math. Soc. 74, 279–288 (2006)
    • 32. Niven, I., Zuckerman, H.S., Montgomery, H.L.: An introduction to the theory of numbers. John Wiley & Sons, New York (1991)
    • 33. Panja, S., Prasad, S.: The image of polynomials and Waring type problems on upper triangular matrix algebras. J. Algebra 631, 148–193...
    • 34. Porat, M., Vinnikov, V.: Realizations of non-commutative rational functions around a matrix centre, I: synthesis, minimal realizations...
    • 35. Porat, M., Vinnikov, V.: Realizations of noncommutative rational functions around a matrix centre, II: the lost-abbey conditions. Integr....
    • 36. Procesi, C.: The invariant theory of n × n matrices. Adv. Math. 19, 306–381 (1976)
    • 37. Rowen, L.H.: Polynomial identities in ring theory, Pure and Applied Mathematics 84. Academic Press Inc, New York-London (1980)
    • 38. Shafarevich, I.R.: Basic algebraic geometry. 1, 3rd edn. Springer, Heidelberg (2013)
    • 39. Sourour, A.R.: A factorization theorem for matrices. Linear Multilinear Algebra 19, 141–147 (1986)
    • 40. Volˇciˇc, J.: On domains of noncommutative rational functions. Linear Algebra Appl. 516, 69–81 (2017)
    • 41. Volˇciˇc, J.: Hilbert’s 17th problem in free skew fields. Forum Math. Sigma 9, E61 (2021)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno