Ir al contenido

Documat


Random positive linear operators and their applications to nonparametric statistics

  • José A. Adell [1] ; J. T. Alcalá [1] Árbol académico ; C. Sangüesa [1]
    1. [1] Universidad de Zaragoza

      Universidad de Zaragoza

      Zaragoza, España

  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 34, Nº. 4, 2025, págs. 981-1011
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We outline a general procedure on how to apply random positive linear operators in nonparametric estimation. As a consequence, we give explicit confidence bands and intervals for a distribution function F concentrated on [0, 1] by means of random Bernstein polynomials, and for the derivatives of F by using random Bernstein–Kantorovich-type operators. In each case, the lengths of such bands and intervals depend upon the degree of smoothness of F or its corresponding derivatives, measured in terms of appropriate moduli of smoothness. In particular, we estimate the uniform distribution function by means of a random polynomial of second order. This estimator is much simpler and performs better than the classical uniform empirical process used in the celebrated Dvoretzky–Kiefer–Wolfowitz inequality.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno