Ir al contenido

Documat


Experimental Platform for Intelligent Computing (EPIC)

  • Autores: Javier A. Hernández-Castaño, Yenny Villuendas-Rey, Oscar Camacho Nieto, Cornelio Yáñez Márquez
  • Localización: Computación y Sistemas (CyS), ISSN 1405-5546, ISSN-e 2007-9737, Vol. 22, Nº. 1, 2018, págs. 245-253
  • Idioma: inglés
  • DOI: 10.13053/cys-22-1-2907
  • Enlaces
  • Resumen
    • Abstract: This paper presents the architecture and user interface of a novel Experimental Platform for Intelligent Computing (EPIC). Unlike the two most popular platforms (WEKA and KEEL), the proposed EPIC tool has a very friendly user interface, and offers some advantages with respect to existing tools for Intelligent Computing experiments. In particular, EPIC handles mixed and incomplete data directly, without preprocessing, and its architecture supports multi-target supervised classification and regression. It also contains a module for two dimensional dataset visualization, which includes the visualization of the decision frontier for several supervised learning algorithms.

  • Referencias bibliográficas
    • Bezdek, J.C.. (1994). What is Computational Intelligence?. IEEE Press Computational Intelligence Imitating Life. 1-12
    • Konar, A.. (2005). Computational intelligence principles, Techniques and Applications. Springer Berlin Heidelberg.
    • Wang, X.. (2017). Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of...
    • Mondal, A.,Khare, D.,Kundu, S.. (2017). Environment and Earth Observation. Springer.
    • Xue, B.,Zhang, M.,Browne, N.W.,Yao, X.. (2016). A survey on evolutionary computation approaches to feature selection. IEEE Transactions on...
    • Fernández, A.. (2017). Pareto Based Ensemble with Feature and Instance Selection for Learning from Multi-Class Imbalanced Datasets. International...
    • Rosales-Pérez, A.,García, S.,Gonzalez, J.A.,Coello-Coello, C.A.,Herrera, F.. (2017). An Evolutionary Multi-Objective Model and Instance Selection...
    • Villarreal, S.E.G.,Schaeffer, S.E.. (2016). Local bilateral clustering for identifying research topics and groups from bibliographical data....
    • Hasenstab, K.,Sugar, C.,Telesca, D.,Jeste, S.,Şentürk, D.. (2016). Robust functional clustering of ERP data with application to a study of...
    • Golman, R.,Klepper, S.. (2016). Spinoffs and clustering. The RAND Journal of Economics. 47. 341
    • Ramírez-Rubio, R.,Aldape-Péreza, M.,Yáñez-Márquez, C.,López-Yáñez, I.,Camacho, O.. (2017). Pattern classification using smallest normalized...
    • Cleofas-Sánchez, L.,Sánchez, S.,García, V.,Valdovinos, R.M.. (2016). Associative learning on imbalanced environments: An empirical study....
    • Uriarte-Arcia, A.V.,López-Yáñez, I.,Yáñez-Márquez, C.. (2014). One-hot vector hybrid associative classifier for medical data classification....
    • Salmeron, J.L.,Froelich, W.. (2016). Dynamic optimization of fuzzy cognitive maps for time series forecasting. Knowledge-Based Systems. 105....
    • Sheremetov, L.B.,González-Sánchez, A.,López-Yáñez, I.,Ponomarev, A.V.. (2013). Time series forecasting: applications to the upstream oil and...
    • Cao, L.J.,Tay, F.E.H.. (2003). Support vector machine with adaptive parameters in financial time series forecasting. IEEE Transactions on...
    • Uriarte-Arcia, A.V.,López-Yáñez, I.,Yáñez-Márquez, C.,Gama, J.,Camacho-Nieto, O.. (2015). Data stream classification based on the gamma classifier....
    • Guha, S.,Mishra, N.. (2016). Data Stream Management. Springer.
    • Baccarelli, E.,Cordeschi, N.,Mei, A.,Panella, M.,Shojafar, M.,Stefa, J.. (2016). Energy-efficient dynamic traffic offloading and reconfiguration...
    • Hall, M.,Frank, E.,Holmes, G.,Pfahringer, B.,Reutemann, P.,Witten, I.H.. (2009). The WEKA data mining software: an update. ACM SIGKDD explorations...
    • Alcalá-Fdez, J.,Fernández, A.,Luengo, J.,Derrac, J.,García, S.,Sánchez, L.,Herrera, F.. (2011). KEEL data-mining software tool: data set repository,...
    • Souza, C.R.. (2012). A Tutorial on Principal Component Analysis with the Accord. NET Framework. Department of Computing, Federal University...
    • (2017). Amazon. Amazon Machine Learning Service.
    • Ooi, B.C.,Tan, K.L.,Wang, S.,Wang, W.,Cai, Q.,Chen, G.,Gao, J.,Luo, Z.,Tung, A.K.H.,Wang, Y.,Xie, Z.,Zhang, M.,Zheng, K.. (2015). SINGA: A...
    • Barnes, J.. (2015). Microsoft Azure Essentials Azure Machine Learning. Microsoft Press.
    • Jia, Y.,Shelhamer, E.,Donahue, J.,Karayev, S.,Long, J.,Girshick, R.,Guadarrama, S.,Darrell, T.. (2014). Caffe: Convolutional Architecture...
    • (2014). Apache Software Foundation. Mahout.
    • Curtin, R.R.,Cline, J.R.,Slagle, N.P.,March, W.B.,Ram, P.,Mehta, N.A.,Gray, A.G.. (2013). MLPACK: A scalable C++ machine learning...
    • (2014). Oryx Project Oryx 2: Lambda architecture on Apache Spark. Apache Kafka for real-time large scale machine learning.
    • Smedt, T.D.,Daelemans, W.. (2012). Pattern for Python. Journal of Machine Learning Research. 13. 2063
    • Pedregosa, F.,Varoquaux, G.,Gramfort, A.,Michel, V.,Thirion, B.,Grisel, O.,Blondel, M.,Prettenhofer, P.,Weiss, R.,Dubourg, V.,Vanderplas,...
    • Sonnenburg, S.. (2017). shogun-toolbox/shogun: Shogun 6.1.0.
    • Meng, X.,Bradley, J.,Yavuz, B.,Sparks, E.,Venkataraman, S.,Liu, D.. (2016). Mllib: Machine learning in apache spark. Journal of Machine Learning...
    • Abadi, M.. (2016). TensorFlow: A System for Large-Scale Machine Learning. 16. 12th USENIX Symposium on Operating Systems Design and Implementation...
    • Breuleux, O.,Bastien, F.,Lamblin, P.,Pascanu, R.,Desjardins, G.,Turian, J.,Warde-Farley, D.,Bengio, Y.. (2010). Theano: A CPU and GPU math...
    • Carrasco-Ochoa, J.A.,Martínez-Trinidad, J.F.. (2003). International Conference on Intelligent Data Engineering and Automated Learning. Springer....
    • López-Espinoza, E.,Carrasco-Ochoa, J.A.,Martínez-Trinidad, J.F.. (2004). Iberoamerican Congress on Pattern Recognition. Springer.
    • Ruiz-Shulcloper, J.,Lazo-Cortés, M.. (1999). Mathematical algorithms for the supervised classification based on fuzzy partial precedence....
    • Medina-Pérez, M.A.,García-Borroto, M.,Villuendas-Rey, Y.,Ruiz-Shulcloper, J.. (2006). Iberoamerican Congress on Pattern Recognition. Springer....
    • Medina-Pérez, M.A.,García-Borroto, M.,Ruiz-Shulcloper, J.. (2007). Iberoamerican Congress on Pattern Recognition. Springer.
    • Read, J.,Pfahringer, B.,Holmes, G.. (2016). Meka: a multi-label/multi-target extension to weka. The Journal of Machine Learning Research....
    • Cover, T.,Hart, P.. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory. 13. 21
    • John, G.H.,Langley, P.. (1995). Estimating continuous distributions in Bayesian classifiers. Eleventh conference on Uncertainty in artificial...
Los metadatos del artículo han sido obtenidos de SciELO México

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno