Ir al contenido

Documat


Qualitative Dynamics and Homoclinic Chaos in a Stochastic Klein–Gordon–Schrödinger System

  • Ahmed H. Arnous [1]
    1. [1] Khazar University

      Khazar University

      Azerbaiyán

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We investigate the qualitative dynamics of a Klein–Gordon–Schrödinger system subject to multiplicative Stratonovich noise, which models random perturbations in the environment or medium. A gauge transformation reduces the original stochastic partial differential equations to a deterministic mean-field system that preserves the essential nonlinear wave–field coupling. Using Lie group symmetry methods, we derive exact reductions to travelling-wave solutions and characterize the full family of solitary and periodic profiles through phase-plane and Hamiltonian analyses. The complete discriminant system method provides an explicit classification of the solution spectrum in terms of the discriminant structure of the governing cubic polynomial. To reveal how resonant perturbations break integrability, we apply the classical Melnikov method and demonstrate the existence of transverse homoclinic intersections, implying the emergence of chaotic dynamics. Numerical phase portraits and time series illustrate the persistence, modulation, and loss of coherence of localized wave structures under increasing stochastic influence and periodic forcing. The results clarify the interplay between dispersion, nonlinearity, and randomness in shaping the qualitative behavior of nonlinear dispersive systems.

  • Referencias bibliográficas
    • 1. Xanthopoulos, P., Zouraris, G.E.: A linearly implicit finite difference method for a Klein–Gordon– Schrödinger system modeling electron–ion...
    • 2. Biler, P.: Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling. SIAM J. Math. Anal. 21(5), 1190–1212...
    • 3. Raza, N., Rezazadeh, H., Mirzazadeh, M., Biswas, A.: New and more solitary wave solutions for the Klein–Gordon–Schrödinger model. Front....
    • 4. Cisneros-Ake, L.A.: Stability of multi-hump localized solutions in the Holstein model for linear acoustic and soft nonlinear optical interactions....
    • 5. Yumak, A., Boubaker, K., Petkova, P.: An attempt to give exact solitary and periodic wave polynomial solutions to the nonlinear Klein–Gordon–Schrödinger...
    • 6. Wang, J., Liang, D., Wang, Y.: Analysis of a conservative high-order compact finite difference scheme for the Klein–Gordon–Schrödinger...
    • 7. Hong, J., Hou, B., Sun, L., Zhang, X.: Novel structure-preserving schemes for stochastic Klein– Gordon–Schrödinger equations with additive...
    • 8. Biswas, A., Triki, H.: 1-Soliton solution of the Klein–Gordon–Schrödinger’s equation with power law nonlinearity. Appl. Math. Comput. 217,...
    • 9. Zhang, J., Kong, L.: New energy-preserving schemes for Klein–Gordon–Schrödinger equations. Appl. Math. Model. 40, 6969–6982 (2016)
    • 10. Bao, W., Yang, L.: Efficient and accurate numerical methods for the Klein–Gordon–Schrödinger equations. J. Comput. Phys. 225, 1863–1893...
    • 11. Cai, J.-X., Wang, J.-L., Wang, Y.-S.: A local energy-preserving scheme for Klein–Gordon–Schrödinger equations. Chin. Phys. B 24, 050205...
    • 12. Zhang, Y., Shen, J.: Efficient structure preserving schemes for the Klein–Gordon–Schrödinger equations. J. Sci. Comput. 89, 47 (2021)
    • 13. Li, H., Yang, Y., Li, X.: An efficient linearly implicit and energy-conservative scheme for two dimensional Klein–Gordon–Schrödinger equations....
    • 14. Ji, B., Zhang, L.: A dissipative finite difference Fourier pseudo-spectral method for the Klein–Gordon– Schrödinger equations with damping...
    • 15. Wang, J., Xiao, A.: An efficient conservative difference scheme for fractional Klein–Gordon– Schrödinger equations. Appl. Math. Comput....
    • 16. Hong, J., Jiang, S., Li, C.: Explicit multi-symplectic methods for Klein–Gordon–Schrödinger equations. J. Comput. Phys. 228(9), 3517–3532...
    • 17. Arnous, A.H.: Chaotic dynamics and bifurcation analysis of optical solitons in birefringent fibers governed by the Sasa-Satsuma equation...
    • 18. Arnous, A.H.: Lie symmetries, stability, and chaotic dynamics of solitons in nematic liquid crystals with stochastic perturbation. Chaos,...
    • 19. Ekici, E.U., Triki, H.: Stochastic perturbation of analytical solutions for the dispersive concatenation model with spatio-temporal dispersion...
    • 20. Rehman, H.U., Iqbal, I., Zulfiqar, H., Gholami, D., Rezazadeh, H.: Stochastic soliton solutions of conformable nonlinear stochastic systems...
    • 21. Zayed, E.M.E., Ahmed, M.S., Arnous, A.H., Yıldırım, Y.: Novel soliton solutions of the (3+1)- dimensional stochastic nonlinear Schrödinger...
    • 22. Durmus, S.A.: Optical soliton solutions of the stochastic third-order nonlinear Schrödinger equation with multiplicative white noise via...
    • 23. Adem, A.R.: A (2+1)-dimensional Korteweg–de Vries type equation in water waves: Lie symmetry analysis, multiple exp-function method,...
    • 24. Khalique, C.M., Biswas, A.: A Lie symmetry approach to nonlinear Schrödinger’s equation with non-Kerr law nonlinearity. Commun. Nonlinear...
    • 25. Kumar, S., Dhiman, S.K., Baleanu, D., Osman, M.S., Wazwaz, A.-M.: Lie symmetries, closed-form solutions, and various dynamical profiles...
    • 26. Chicone, C.: Ordinary Differential Equations with Applications. Springer, Berlin (2024)
    • 27. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer Science & Business Media, Berlin, Jermany (2006)
    • 28. Shi, Y.: Melnikov analysis of chaos in a simple SIR model with periodically or stochastically modulated nonlinear incidence rate. J. Biol....
    • 29. Bhan, C., Karwasra, R., Malik, S., Kumar, S., Arnous, A.H., Shah, N.A., Chung, J.D.: Bifurcation, chaotic behavior and soliton solutions...
    • 30. Rafiq, M.H., Raza, N.: Dynamic study of bifurcation, chaotic behavior and multi-soliton profiles for the system of shallow water wave...
    • 31. Murad, M.A.S., Omar, F.M.: Optical solitons, dynamics of bifurcation, and chaos in the generalized integrable (2+1)-dimensional nonlinear...
    • 32. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1991)
    • 33. Stochastic Differential Equations: An Introduction with Applications, 2nd edn. Springer, Berlin (2003)
    • 34. Bergé, L.: Wave collapse in physics: principles and applications to nonlinear optics and plasma turbulence. Phys. Rep. 303(5–6), 259–370...
    • 35. Manfredi, G., Haas, F.: Self-consistent fields in quantum plasmas: the quantum Zakharov system. Phys. Rev. B 64, 075316 (2001)
    • 36. Scott, A.C.: Davydov’s soliton. Phys. Rep. 217(1), 1–67 (1992)
    • 37. Brizhik, L., Eremko, A., Piette, B., Zakrzewski, W.J.: Solitons in α-helical proteins. Phys. Rev. E 70, 031914 (2004)
    • 38. Liu, C.-S.: Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno