Ir al contenido

Documat


Semiclassical Constant Elasticity of Variance Model for Option Pricing: An Analytical Approach

  • Autores: José A. Capitán, José Lope Alba, Juan José Morales Ruiz Árbol académico
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper is devoted to obtaining closed-form solutions for the semiclassical approximation of the heat kernel of the diffusion equation, as defined by the constant elasticity of variance (CEV) option pricing model. This model is a natural, non-trivial extension of the classical Black-Scholes-Merton model. One of the key points is that our calculations are based on the Van Vleck-Morette determinant instead of the Van Vleck determinant used by other authors, giving rise to highly complicated implicit formulas rather than the simple explicit formula we obtain. Another reason for this simplification is that we use the more powerful Hamiltonian formulation instead of the Lagrangian one. In fact, we compute the Van Vleck-Morette determinant in two different ways:

      first, by solving the classical Hamiltonian equations, and second, by solving the variational equations. Furthermore, our calculations reveal a necessary exponential factor in the prefactor of the kernel that was missing in previous work.

  • Referencias bibliográficas
    • 1. Acosta-Humánez, P.B., Capitán, J.A., Morales-Ruiz, J.J.: Integrability of stochastic birth-death processes via differential Galois theory....
    • 2. Acosta-Humánez, P., Lázaro, J.T., Morales-Ruiz, J.J., Pantazi, C.: Semiclassical quantification of some two degree of freedom potentials:...
    • 3. Araneda, A.A., Villena, M.J.: Computing the CEV option pricing formula using the semiclassical approximation of path integral. J. Comput....
    • 4. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)
    • 5. Cox, J.C.: The Constant Elasticity of Variance Option Pricing Model. The Journal of Portfolio Management 23, 15–17 (1996)
    • 6. Cox, J.C., Ross, S.A.: The valuation of options for alternative stochastic processes. J. Financ. Econ. 3, 145–166 (1976)
    • 7. DeWitt-Morette, C.: The semiclassical expansion. Ann. Phys. 97, 367–399 (1976)
    • 8. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)
    • 9. Feller, W.: Two singular diffusion problems. Ann. Math. 54, 173–182 (1961)
    • 10. Glasserman, P.: Monte Carlo methods in financial engineering, vol. 53. Springer, New York (2004)
    • 11. Kolokoltsov, V.N.: Semiclassical analysis for diffusions and stochastic processes. Springer, (2007)
    • 12. Langouche, F., Rockaerts, D., Tirapegui, E.: Functional Integration and Semiclassical Expansion. Reidel, Dortrech (1982)
    • 13. Linetsky, V., Mendoza, R.: The constant elasticity of variance model. Encyclopedia of Quantitative Finance 328–334. John Wiley & Sons,...
    • 14. Ramis, J.P., Martinet, J.: Théorie de Galois différentielle et resommation. Computer Algebra and Differential Equations, Comput. Math....
    • 15. Morales-Ruiz, J.J.: A differential Galois approach to path integrals. Journal of Mathematical Physics 61 (2020)
    • 16. Morales-Ruiz, J.J., Theory, D.G., Non-integrability of Hamiltonian Systems. Modern Birkhäuser Classics, Reprint,: of the 1999 Edition...
    • 17. Morales-Ruiz, J.J., Ramis, J.-P.: Galoisian obstructions to integrability of Hamiltonian systems. Methods and Applications of Analysis...
    • 18. Morette, C.: On the definition and approximation of Feynman’s path integrals. Phys. Rev. 81, 848 (1951)
    • 19. Pauli, W.: Selected topics in field quantization, Pauli Lecures in Physics vol. 6. Dover, 2000 (based on lectures given by Pauli at Zurich...
    • 20. Schroder, M.: Computing the constant elasticity of variance option pricing formula. J. Financ. 44, 211–219 (1989)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno