Ir al contenido

Documat


Nonlinear Unstable Neutralized Pressure of Subsets for Partially Hyperbolic Systems

  • Zeya Mi [1] ; Yiwen Zhang [1] ; Congcong Qu [2]
    1. [1] Nanjing University of Information Science and Technology

      Nanjing University of Information Science and Technology

      China

    2. [2] Zhejiang Wanli University

      Zhejiang Wanli University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, for a C1 partially hyperbolic diffeomorphism f : M → M, we introduce the concept of nonlinear unstable neutralized topological pressure on subsets, present the Billingsley-type theorem and subsequently establish a corresponding variational principle. This work is motivated by [Buzzi, Kloeckner, Leplaideur, Ann. H. Lebesgue 6, 1429–1477 (2023), Ovadia, Rodríguez-Hertz, Int. Math. Res. Not. IMRN 11, 9469– 9481 (2024), Tian, Wu, Nonlinearity 35(1), 658–680 (2022)].

  • Referencias bibliográficas
    • 1. Adler, R., Konheim, A., McAndrew, M.: Topological entropy. Trans. Amer. Math. Soc. 114, 309–319 (1965)
    • 2. Barreira, L.: A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergodic Theory...
    • 3. Barreira, L.: Thermodynamic formalism and applications to dimension theory, Progress in Mathematics, 294. Birkhäuser/Springer Basel AG,...
    • 4. Barreira, L., Holanda, C.: Higher-dimensional nonlinear thermodynamic formalism. J. Stat. Phys. 187(2), 18 (2022)
    • 5. Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. 153, 401–414 (1971)
    • 6. Bowen, R.: Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184, 125–136 (1973)
    • 7. Buzzi, J., Kloeckner, B., Leplaideur, R.: Nonlinear thermodynamical formalism. Ann. H. Lebesgue 6, 1429–1477 (2023)
    • 8. Ding, B., Wang, T.: Some variational principles for nonlinear topological pressure. Dyn. Syst. 40(1), 35–55 (2025)
    • 9. Feng, D., Huang, W.: Variational principles for topological entropies of subsets. J. Funct. Anal. 263(8), 2228–2254 (2012)
    • 10. Gelfert, K.: Equality of pressures for diffeomorphisms preserving hyperbolic measures. Math. Z. 261(4), 711–724 (2009)
    • 11. Hu, H., Hua, Y., Wu, W.: Unstable entropies and variational principle for partially hyperbolic diffeomorphisms. Adv. Math. 321, 31–68...
    • 12. Hu, H., Wu, W., Zhu, Y.: Unstable pressure and u-equilibrium states for partially hyperbolic diffeomorphisms. Ergodic Theory Dynam. Systems...
    • 13. Huang, X., Lian, Y., Zhu, C.: A Billingsley-type theorem for the pressure of an action of an amenable group. Discrete Contin. Dyn. Syst....
    • 14. Ji, Y., Wang, Y.: Billingsley type theorem for weighted Bowen entropy. Results Math. 77(2), 90 (2022)
    • 15. Liu, L., Jiao, J., Zhou, X.: Unstable pressure of subsets for partially hyperbolic systems. Dyn. Syst. 37(4), 564–577 (2022)
    • 16. Ma, J., Wen, Z.: A Billingsley type theorem for Bowen entropy. C. R. Math. Acad. Sci. Paris 346(9–10), 503–507 (2008)
    • 17. Molaei, M.: Dynamically defined topological pressure. J. Dyn. Syst. Geom. Theor. 6(1), 75–81 (2008)
    • 18. Ovadia, S., Rodríguez-Hertz, F.: Neutralized local entropy and dimension bounds for invariant measures. Int. Math. Res. Not. IMRN 11,...
    • 19. Pesin, Y.: Dimension theory in dynamical systems, Chicago Lectures in Mathematics. Univ. Chicago Press, Chicago, IL (1997)
    • 20. Pesin, Y., Pitskel, B.: Topological pressure and the variational principle for noncompact sets. Funktsional. Anal. i Prilozhen. 18(4),...
    • 21. Qu, C., Xu, L.: Variational principle for non-additive neutralized Bowen topological pressure. Qual. Theory Dyn. Syst. 23(5), 199 (2024)
    • 22. Ruelle, D.: Statistical mechanics on a compact set with Zv action satisfying expansiveness and specification. Trans. Amer. Math. Soc....
    • 23. Sarkooh, J.: Variational principle for neutralized Bowen topological entropy on subsets of free semigroup actions. Proc. Indian Acad....
    • 24. Sarkooh, J., Ehsani, A., Pashaei, Z., Abdi, R.: Variational principle for neutralized Bowen topological entropy on subsets of non-autonomous...
    • 25. Tang, X., Cheng, W., Zhao, Y.: Variational principle for topological pressures on subsets. J. Math. Anal. Appl. 424(2), 1272–1285 (2015)
    • 26. Tian, X., Wu, W.: Unstable entropies and dimension theory of partially hyperbolic systems. Nonlinearity 35(1), 658–680 (2022)
    • 27. Walters, P.: A variational principle for the pressure of continuous transformations. Amer. J. Math. 97(4), 937–971 (1975)
    • 28. Walters, P.: An introduction to ergodic theory. Graduate Texts in Mathematics, vol. 79. Springer, New York-Berlin (1982)
    • 29. Wang, C., Chen, E.: Variational principles for BS dimension of subsets. Dyn. Syst. 27(3), 359–385 (2012)
    • 30. Wang, T.: Variational relations for metric mean dimension and rate distortion dimension. Discrete Contin. Dyn. Syst. 41(10), 4593–4608...
    • 31. Wang, X., Wu, W., Zhu, Y.: Local unstable entropy and local unstable pressure for random partially hyperbolic dynamical systems. Discrete...
    • 32. Yang, R., Chen, E., Zhou, X.: Variational principle for neutralized Bowen topological entropy. Qual. Theory Dyn. Syst. 23(4), 162 (2024)
    • 33. Zhang, B., Liu, L.: A Billingsley type theorem for Bowen topological entropy of nonautonomous dynamical systems. Open Math. 20(1), 1715–1722...
    • 34. Zhang, W., Li, Z., Zhou, Y.: Unstable metric pressure of partially hyperbolic diffeomorphisms with sub-additive potentials. Nonlinearity...
    • 35. Zhong, X., Chen, Z.: Variational principles for topological pressures on subsets. Nonlinearity 36(2), 1168–1191 (2023)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno