Ir al contenido

Documat


Dynamical Properties of Singularly Perturbed Renormalization Group Approach to Slow-Fast Systems

  • Ning Sun [1] ; Shaoyun Shi [2] ; Wenlei Li [2]
    1. [1] National University of Defense Technology

      National University of Defense Technology

      China

    2. [2] Jilin University

      Jilin University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Extensive research has been conducted on solving and analyzing the dynamical properties of slow-fast systems. Existing results mostly focus either on quantitative or qualitative analysis in isolation, creating a methodological dichotomy. This study presents a novel renormalization group (RG) framework that systematically bridges this methodological divide while elucidating the RG method’s inherent dynamical characteristics in slow-fast system investigations. Our results are threefold: First, we develop a rigorous RG formulation to construct arbitrary-order approximate solutions for initial value problems in slow-fast systems, complete with comprehensive error analysis. Next, we derive RG-approximated vector fields that preserve the essential dynamics of the original system, enabling detailed investigation of normally hyperbolic invariant manifolds through geometric singular perturbation theory. Furthermore, we establish an innovative RG-based methodology for constructing asymptotically accurate slow manifolds, complete with convergence proofs under asymptotic stability conditions. The analytical framework is complemented by numerical implementations demonstrating the efficacy of our approach through representative case studies. This unified RG methodology advances the field by providing both quantitative precision and qualitative insights within a single coherent framework.

  • Referencias bibliográficas
    • 1. Boyanovsky, D., De Vega, H.: Dynamical renormalization group approach to relaxation in quantum field theory. Ann. Phys. 307, 335–371 (2003)
    • 2. Chen, L.Y., Goldenfeld, N., Oono, Y.: Renormalization group theory for global asymptotic analysis. Phys. Rev. Lett. 73, 1311–1315 (1994)
    • 3. Chiba, H.: Approximation of center manifolds on the renormalization group method. J. Math. Phys. 49, 102703 (2008)
    • 4. Chiba, H.: c1 approximation of vector fields based on the renormalization group method. SIAM J. Appl. Dyn. Syst. 7, 895–932 (2008)
    • 5. Chiba, H.: Extension and unification of singular perturbation methods for odes based on the renormalization group method. SIAM J. Appl....
    • 6. DeVille, R.E.L., Harkin, A., Holzer, M., Josi´c, K., Kaper, T.J.: Analysis of a renormalization group method and normal form theory for...
    • 7. DeVille, R.E.L., Harkin, A., Josic, K., Kaper, T.J.: Asymptotic normal form theory for nonautonomous ´ equations and its connections with...
    • 8. Li, W., Shi, S.: Singularly perturbed renormalization group method and its significance in dynamical systems theory. Communications in...
    • 9. Li, W., Shi, S.: Singular perturbed renormalization group theory and its application to highly oscillatory problems. Discrete & Continuous...
    • 10. Sun, N., Shi, S., Li, W.: Singular renormalization group approach to sis problems. Discrete & Continuous Dynamical Systems-B 25, 3577...
    • 11. Temam, R., Wirosoetisno, D.: On the solutions of the renormalized equations at all orders. Adv. Differential Equations 8(8), 1005–1024...
    • 12. Xu, L., Xu, Z., Li, W., Shi, S.: Renormalization group approach to a class of singularly perturbed delay differential equations. Commun....
    • 13. Zhou, R., Shi, S., Li, W.: Renormalization group approach to boundary layer problems. Commun. Nonlinear Sci. Numer. Simul. 71, 220–230...
    • 14. Ziane, M.: On a certain renormalization group method. J. Math. Phys. 41, 3290–3299 (2000)
    • 15. Moise, I., Temam, R.: Renormalization group method: application to navier-stokes equation. Discrete & Continuous Dynamical Systems...
    • 16. Moise, I., Ziane, M.: Renormalization group method. applications to partial differential equations. Journal of Dynamics and Differential...
    • 17. Petcu, M., Temam, R., Wirosoetisno, D.: Renormalization group method applied to the primitive equations. J. Differential Equations 208,...
    • 18. Blömker, D., Gugg, C., Maier-Paape, S.: Stochastic navier-stokes equation and renormalization group theory. Physica D 173, 137–152 (2002)
    • 19. Glatt-Holtz, N., Ziane, M.: Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete &...
    • 20. Qu, S., Li,W., Shi, S.: Renormalization group approach to sdes with nonlinear diffusion terms. Mediterr. J. Math. 18, 1–17 (2021)
    • 21. Coluzzi, B., Bersani, A.M., Bersani, E.: An alternative approach to michaelis-menten kinetics that is based on the renormalization group....
    • 22. Marciniak-Czochra, A., Mikeli´c, A., Stiehl, T.: Renormalization group second-order approximation for singularly perturbed nonlinear ordinary...
    • 23. Kuehn: Multiple time scale dynamics. Applied Mathematical Sciences 191 (2015)
    • 24. Liu, W.: One-dimensional steady-state poisson-nernst-planck systems for ion channels with multiple ion species. J. Differential Equations...
    • 25. Markowich, P.A.: The Stationary Semiconductor Device Equations. Springer, (1985)
    • 26. Buslaev, V., Grinina, E.: Remarks on the quantum adiabatic theorem. St. Petersburg Mathematical Journal 16, 639–648 (2005)
    • 27. Dubbeldam, J., Krauskopf, B.: Self-pulsations of lasers with saturable absorber: dynamics and bifurcations. Optics Communications 159,...
    • 28. Estrin, Y., Kubin, L.: Criterion for thermomechanical instability of low temperature plastic deformation. Scr. Metall. 14, 1359–1364 (1980)
    • 29. Field, R.J., Noyes, R.M.: Oscillations in chemical systems. iv. limit cycle behavior in a model of a real chemical reaction. The Journal...
    • 30. Hek, G.: Geometric singular perturbation theory in biological practice. J. Math. Biol. 60, 347–386 (2010)
    • 31. Tikhonov, A.N.: Systems of differential equations containing small parameters in the derivatives. Matematicheskii Sbornik 73, 575–586...
    • 32. Vasil’eva, A.B.: Asymptotic behaviour of solutions of certain problems for ordinary non-linear differential equations with a small parameter...
    • 33. O’Malley, R.E.: Singular Perturbation Methods for Ordinary Differential Equations vol. 89. Springer, (1991)
    • 34. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differential Equations 31, 53–98 (1979)
    • 35. Fenichel, N., Moser, J.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1971)
    • 36. Jones, C., Kopell, N.: Tracking invariant manifolds with differential forms in singularly perturbed systems. J. Differential Equations...
    • 37. Liu,W.: Exchange lemmas for singular perturbation problems with certain turning points. J. Differential Equations 167, 134–180 (2000)
    • 38. Dumortier, F., Roussarie, R.H.: Canard Cycles and Center Manifolds vol. 577. American Mathematical Soc., (1996)
    • 39. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points– fold and canard points in two dimensions....
    • 40. Sun, N., Shi, S., Li, W.: Renormalization group method for solving initial value problem of slow-fast system. Mathematical Methods in...
    • 41. Kokotovi´c, P., Khalil, H.K., O’reilly, J.: Singular PerturbationMethods in Control: Analysis and Design. SIAM, (1999)
    • 42. Zhang, Z.: Qualitative Theory of Differential Equations vol. 101. American Mathematical Soc., (1992)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno