Ir al contenido

Documat


The Period Function of Some Piecewise Quadratic Polynomial Hamiltonian Systems

  • Panpan Zhang [1] ; Kuilin Wu [1]
    1. [1] Guizhou University

      Guizhou University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we investigate the period functions of three cases of piecewise quadratic Hamiltonian systems that possess a center at the origin. The period function of one system is monotone, while the period functions of the other two systems have at most one critical period. Moreover, we provide some bifurcation diagrams of the period function of the center at the origin and present the global phase portraits of the corresponding piecewise quadratic Hamiltonian systems.

  • Referencias bibliográficas
    • 1. Li, C.Z.: Study of period functions. Math. Theory Appl. 43, 1–31 (2023)
    • 2. Colak, I.E., Llibre, J., Valls, C.: Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields. J. Differ....
    • 3. Colak, I.E., Llibre, J., Valls, C.: Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields. Adv. Math....
    • 4. Llibre, J., Xiao, D.M.: On the configurations of centers of planar hamiltonian kolmogorov cubic polynomial differential systems. Pacific...
    • 5. He, H.J., Liu, C.J., Xiao, D.M.: Centers and invariant straight lines of planar real polynomial vector fields and its configurations, arXiv:2303.14403...
    • 6. Zoł¸ ˙ adek, H. : The classification of reversible cubic systems with center. Topol. Methods Nonlinear Anal. 4, 79–136 (1994)
    • 7. Giné, J.: On some open problems in planar differential systems and hilbert’s 16th problem. Chaos Soliton Fract. 31, 1118–1134 (2007)
    • 8. Dulac, H.: Détermination et intégration d’une certaine classe d’équations différentielles ayant pour point singulier un cente. Bull Sci...
    • 9. Kapteyn, W.: On the centre of the integral curves which satisfy differential equations of the first order and the first degree, konikl,...
    • 10. Kapteyn, W.: On the centre of the integral curves which satisfy differential equations of the first order and the first degree, konikl,...
    • 11. Bautin, N.N.: On the number of limit cycles which appears with the variation of coefficients from an equilibrium position of focus or...
    • 12. Iliev, I.D.: Perturbations of quadratic centers. Bull. Sci. Math. 122, 107–161 (1998)
    • 13. Coppel, W.A., Gavrilov, L.: The period function of a hamiltonian quadratic system. Differ. Integral Equ. 6, 1357–1365 (1993)
    • 14. Hsu, S.B.: A remark on the period of the period solution in the lotka-volterra system. J. Math. Anal. Appl. 95, 428–436 (1983)
    • 15. Rothe, F.: The periods of the lotka-volterra system. J. Reine Angew. Math. 355, 129–138 (1985)
    • 16. Waldvogel, J.: The period in the lotka-volterra system is monotonic. J. Math. Anal. Appl. 114, 178–184 (1986)
    • 17. Zhao, Y.L.: The monotonicity of period function for codimension four quadratic system 4. J. Differ. Equ. 185, 370–387 (2002)
    • 18. Villadelprat, J.: On the reversible quadratic centers with monotone period function. Proc. Am. Math. Soc. 135, 2555–2565 (2007)
    • 19. Villadelprat, J.: The period function of the generalized lotka-volterra centers. J. Math. Anal. Appl. 341, 834–854 (2008)
    • 20. Li, J.M., Li, C.Z., Liu, C.J., Wang, D.C.: The period function of reversible lotka-volterra quadratic centers. J. Differ. Equ. 307, 556–579...
    • 21. Long, T., Liu, C.J., Wang, S.Q.: The period function of quadratic generalized lotka-volterra systems without complex invariant lines....
    • 22. Chicone, C., Jacobs, M.: Bifurcation of critical periods for plane vector fields. Trans. Am. Math. Soc. 312, 433–486 (1989)
    • 23. Mardeši´c, P., Marín, D., Villadelprat, J.: The period function of reversible quadratic centers. J. Differ. Equ. 224, 120–171 (2006)
    • 24. Chen, X.W., Zhang, W.N.: Isochronicity of centers in a switching bautin system. J. Differ. Equ. 252, 2877–2899 (2012)
    • 25. Mañosas, F., Torres, P.: Isochronicity of a class of piecewise continuous oscillators. Proc. Amer. Math. Soc. 133, 3027–3035 (2005)
    • 26. Novaes, D.D., Silva, L.A.: On the non-existence of isochronous tangential centers in filippov vector fields. Proc. Amer. Math. Soc. 150,...
    • 27. Chen, X.Y., Dong, G.F.: Non-isochronicity on piecewise hamiltonian differential systems with homogeneous nonlinearities. Dyn. Syst. 39,...
    • 28. Coll, B., Gasull, A., Prohens, R.: Center-focus and isochronous center problems for discontinuous differential equations. Discrete Contin....
    • 29. Wang, S.Q., Yang, J.Z.: Period functions and critical periods of piecewise linear system, electron. J. Differ. Equ. 79, 1–12 (2020)
    • 30. Buzzi, C.A., Pessoa, C., Torregrosa, J.: Piecewise linear perturbations of a linear center. Discrete Contin. Dyn. Syst 33, 3915–3936 (2013)
    • 31. Huang, W.T., He, D.P., Cai, J.N.: Local cyclicity and criticality in ff-type piecewise smooth cubic and quartic kukles systems. Nonlinear...
    • 32. Chen, T., Huang, L.H., Huang, W.T., Li, W.J.: Bi-center conditions and local bifurcation of critical periods in a switching z2 equivariant...
    • 33. Yang, J., Liu, J.K., Lu, J.P.: Limit cycles and local bifurcation of critical periods in a class of switching z2 equivariant quartic system....
    • 34. Rezende, A.C., Santos, M.A.S., Torregrosa, J.: Period function for a family of piecewise planar hamiltonian systems. Internat. J. Bifur....
    • 35. Zhang, Z.F., Ding, T.R., Huang, W.Z., Dong, Z.X.: Qualitative Theory of Differential Equations, Transl. Math. Monogr., 101, Amer. Math....
    • 36. Dumortier, F., Llibre, J., Artés, J..C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin (2006)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno