Ir al contenido

Documat


Dynamics of a Spatio-Temporal Slow-Fast Predator-Prey System with Reproductive Allee Effect and a Generalist Predator

  • Yanxue Fu [1] ; Xingbo Liu [1]
    1. [1] East China Normal University

      East China Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider the dynamics of a slow-fast predator-prey system in space and time, influenced by the reproductive Allee effect in the prey and the presence of a generalist predator. Using geometric singular perturbation theory (GSPT), entryexit function and normal form theory, we first investigate the non-spatial case, which exhibits rich dynamical phenomena, including the existence of relaxation oscillations, canard cycles, heteroclinic and homoclinic orbits. We then consider the corresponding spatio-temporal model and reveal different kinds of traveling wave solutions, including monotone and non-monotone traveling fronts, traveling pulses, and periodic wave trains. Especially, the existence and uniqueness of the large-amplitude periodic traveling wave train, as well as the traveling front connecting the periodic wave train with the boundary equilibrium, are established. In addition, we show how the corresponding spatial pattern changes in the presence of different timescales. We demonstrate that the system can exhibit Turing instability under certain non-negative diffusion rates. Further, we present possible patterns like spatio-temporal chaos generated by the predator-prey system with diffusion. Simulation results are carried out to verify the behaviors of both the temporal and spatio-temporal models. These results reveal the interplay between the reproductive Allee effect and different timescales, which may lead to a regime shift.

  • Referencias bibliográficas
    • 1. Ai, S., Sadhu, S.: The entry-exit theorem and relaxation oscillations in slow-fast planar systems. J. Differ. Equ. 268, 7220–7249 (2020)
    • 2. Allee, W.C.: Animal aggregations: a study in general sociology, J. Educat. Sociol., 5(130) (1931)
    • 3. Arancibia-Ibarra, C., Bode, M., Flores, J., Pettet, G., van Heijster, P.: Turing patterns in a diffusive holling-tanner predator-prey model...
    • 4. Aziz-Alaoui, M.A., Okiye, M.D.: Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type...
    • 5. Banerjee, M., Banerjee, S.: Turing instabilities and spatio-temporal chaos in ratio-dependent hollingtanner model. Math. Biosci. 236(1),...
    • 6. Beyn, W.-J.: The numerical computation of connecting orbits in dynamical systems. IMA J. Numer. Anal. 10, 379–405 (1990)
    • 7. Chapman, S.J., Kozyreff, G.: Exponential asymptotics of localised patterns and snaking bifurcation diagrams. Phys. D 238, 319–354 (2009)
    • 8. Das, S., Mandal, G., Guin, L.N., Chakravarty, S.: Diverse bifurcation structures and multi-stability in interacting species dynamics, Int....
    • 9. Dey, S., Ghorai, S., Banerjee, M.: Analytical detection of stationary and dynamic patterns in a preypredator model with reproductive allee...
    • 10. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53–98 (1979)
    • 11. Grasman, J.: Asymptotic methods for relaxation oscillations and applications. Applied Mathematical Sciences. Springer-Verlag, New York...
    • 12. Holling, C.S.: The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol....
    • 13. Holling, C.S.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91(7), 385–398 (1959)
    • 14. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Ent. Soc....
    • 15. Hutchinson, G.E.: Circular causal systems in ecology. Ann. NY Acad. Sci. 50, 221–246 (1948)
    • 16. Jankovic, M., Petrovskii, S.: Are time delays always destabilizing? Revisiting the role of time delays and the Allee effect, Theoretical...
    • 17. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic pointsfold and canard points in two dimensions....
    • 18. Krupa, M., Szmolyan, P.: Extending slow manifolds near transcritical and pitchfork singularities. Nonlinearity 14, 1473–1491 (2001)
    • 19. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174(2), 312–368 (2001)
    • 20. Lewis, M.A., Petrovskii, S.V., Potts, J.R.: The mathematics behind biological invasions. Springer, New York (2016)
    • 21. Liu, W., Han, M.: Bifurcations of traveling wave solutions of a generalized burgers-fisher equation. J. Math. Anal. Appl. 533(2), 128012...
    • 22. Lotka, A.J.: Elements of physical biology. Dover Publications, Garden City (1956)
    • 23. Ma, Y., Yang, R.: Hopf-hopf bifurcation in a predator-prey model with nonlocal competition and refuge in prey. Discrete Contin. Dyn. Syst....
    • 24. Maesschalck, P., Schecter, S.: The entry-exit function and geometric singular perturbation theory. J. Differ. Equ. 260, 6697–6715 (2016)
    • 25. Mailleret, L., Lemesle, V.: A note on semi-discrete modelling in the life sciences. Phil. Trans. R. Soc. A 367, 4779–4799 (2009)
    • 26. Mandal, G., Guin, L.N., Chakravarty, S.: Cross-diffusion-induced instabilities in a cooperative hunting population with Allee effect....
    • 27. Mandal, G., Rojas-Palma, A., González-Olivares, E., Chakravarty, S., Guin, L.N.: Allee-induced periodicity and bifurcations in a Gause-type...
    • 28. Mandal, G., Guin, L.N., Chakravarty, S., Han, R.: Dynamic complexities in a predator-prey model with prey refuge influenced by double...
    • 29. Malchow, H., Petrovskii, S.V., Venturino, E.: Spatiotemporal Patterns in Ecology and Epidemiology: theory, models, and simulations, Chapman...
    • 30. Mukherjee, N., Volpert, V.: Bifurcation scenario of turing patterns in prey-predator model with nonlocal consumption in the prey dynamics....
    • 31. Petrovskii, S., Blackshaw, R., Li, B.: Consequences of the allee effect and intraspecific competition on population persistence under...
    • 32. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1984)
    • 33. Pˇribylová, L., Sen, D., Eclerová, V.: Destabilization of a seasonal synchronization in a population model with a seasonally varying allee...
    • 34. Ruan, S.: The effect of delays on stability and persistence in plankton models. Nonlinear Anal. 24(4), 575–585 (1995)
    • 35. Shen, J.: Canard limit cycles and global dynamics in a singularly perturbed predator-prey system with non-monotonic functional response....
    • 36. Solomon, M.E.: The natural control of animal populations. J. Animal. Ecology 18(1), 1–35 (1949)
    • 37. Stephens, D.W., Krebs, J.R.: Foraging Theory, Princeton University Press, (1986)
    • 38. Stephens, P., Sutherland, W., Freckleton, R.: What is the Allee effect? Oikos, 185-190 (1999)
    • 39. Villar-Sepúlveda, E.: Beyond-all-order asymptotics for homoclinic snaking of localised patterns in reaction-diffusion systems, arXiv e-prints,...
    • 40. Villar-Sepúlveda, E., Champneys, A.: Computation of Turing bifurcation normal form for n-component reaction-diffusion systems. ACM Trans....
    • 41. Villar-Sepúlveda, E., Champneys, A.: General conditions for Turing and wave instabilities in reactiondiffusion systems. J. Math. Biol....
    • 42. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118(2972), 558–560 (1926)
    • 43. Wang, F., Yang, R.: Dynamics of a delayed reaction-diffusion predator-prey model with nonlocal competition and double Allee effect in...
    • 44. Wang, F., Yang, R.: Spatial pattern formation driven by the cross-diffusion in a predator-prey model with holling type functional response....
    • 45. Wang, F., Yang, R., Zhang, X.: Turing patterns in a predator-prey model with double allee effect. Math. Comput. Simulation 220, 170–191...
    • 46. Wang, W., Zhang, X.: Canards, heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized holling type iii....
    • 47. Wei, F., Wang, C., Yuan, S.: Spatial dynamics of a diffusive predator-prey model with leslie-gower functional response and strong allee...
    • 48. Zhu, Z., Liu, X.: Existence of traveling wave solutions in a singularly perturbed predator-prey equation with spatial diffusion. Discrete...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno