Ir al contenido

Documat


A class of spatial central configurations in Newtonian 8-body problems

  • Liang Ding [1] ; Zaili Yang [1] ; Pengfei Yuan [2]
    1. [1] Guizhou Minzu University

      Guizhou Minzu University

      China

    2. [2] Southwest University

      Southwest University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • For Newtonian 8-body problems, we investigate a class of spatial configurations consisting of two parallel rhombuses separated by a distance h > 0. In these configurations, four masses m1, m2, m3, and m4 are positioned counterclockwise at the vertices of one rhombus, while the other four masses m 1, m 2, m 3, and m 4 are positioned counterclockwise at the vertices of the second rhombus.We obtain the necessary conditions and sufficient conditions for the existence of these spatial central configurations. Specifically, in the central configurations, we find that if either m j = m j for all j ∈ {1, 2, 3, 4}, or the two rhombuses have equal sizes, then both rhombuses must necessarily be squares.

  • Referencias bibliográficas
    • 1. Chen, J., Luo, J.B.: Solutions of regular polygon with an inner particle for newtonian n + 1-body problem. J. Differential Equations...
    • 2. Barrabés, E., Cors, J.M.: On strictly convex central configurations of the 2n-body problem. J. Dynam. Differential Equations 31, 2293–2304...
    • 3. Barrabés, E., Cors, J.M.: On central configurations of the κn-body problem. J. Math. Anal. Appl. 476, 720–736 (2019)
    • 4. Barrabés, E., Cors, J.M., Fernandes, A.C., Vidal, C.: On nested central configurations of the 3n body problem. J. Nonlinear. Sci. 35, 1–18...
    • 5. Corbera, M., Llibre, J.: Central configurations of the nested regular polyhedra for the spatial 2n-body problem. J. Geom. Phys. 58, 1241–1252...
    • 6. Corbera, M., Delgado, J., Llibre, J.: On the existence of central configurations of p nested n-gons. Qual. Theory Dyn. Syst. 8, 255–265...
    • 7. Corbera, M., Valls, C.: On the existence of symmetric bicircular central configurations of the 3n-body problem. J. Nonlinear Sci. 31, 1–52...
    • 8. Ding, L., Sánchez-Cerritos, J.M., Wei, J.L.: Notes on spatial twisted central configurations for 2n-body problem. Astr. Space Sci. 367,...
    • 9. Dziobek, O.: Ueber einen merkwürdigen fall des vielkörperproblems. Astron. Nach. 152, 32–46 (1900)
    • 10. Euler, L.: De moto rectilineo trium corporum se mutuo attrahentium. Novi. Comm. Acad. Sci. Imp. Petrop. 11, 144-51 (1767)
    • 11. Lagrange, J.: Essai sur le probleme des trois crops. Œuvres 6, 229-324 (1772)
    • 12. Leandro, E.S.G.: Structure and stability of the rhombus family of relative equilibria under general homogeneous forces. J. Dynam. Differential...
    • 13. Llibre, J., Moeckel, R., Simó, C.: Central configurations, periodic orbits, and Hamiltonian systems. Birkhäuser, New York (2015)
    • 14. Longley, W.R.: Some particular solutions in the problem of n bodies. Bull. Am. Math. Soc. 13, 324–335 (1907)
    • 15. Marchesin, M.: A family of three nested regular polygon central configurations. Astr. Space Sci. 364, 1–12 (2019)
    • 16. Meyer, K.R., Offin, D.C.: Introduction to Hamiltonian dynamical systems and the N-body problem. Springer, Cham (2017)
    • 17. Moeckel, R., Simó, C.: Bifurcation of spatial central configurations from planar ones. SIAM J. Math. Anal. 26, 978–998 (1995)
    • 18. Perko, L., Walter, E.: Regular polygon solutions of the n-body problem. Proc. Am. Math. Soc. 94, 301–309 (1985)
    • 19. Saari, D.: On the role and properties of n-body central configurations. Celest. Mech. 21, 9–20 (1980)
    • 20. Wang, Z.Q., Li, F.Y.: A note on the two nested regular polygonal central configurations. Proc. Amer. Math. Soc. 143, 4817–4822 (2015)
    • 21. Wintner, A.: The analytical foundations of celestial mechanics. Princeton University Press, New Jersey (1941)
    • 22. Xie, Z.F., Bhusal, G., Tahir, H.: Central configurations in the planar 6-body problem forming two equilateral triangles. J. Geom. Phys....
    • 23. Yu, X., Zhang, S.Q.: Twisted angles for central configurations formed by two twisted regular polygons. J. Differential Equations 253,...
    • 24. Yu, X., Zhang, S.Q.: Central configurations formed by two twisted regular polygons. J. Math. Anal. Appl. 425, 372–380 (2015)
    • 25. Zhang, S.Q., Zhou, Q.: Periodic solutions for planar 2n-body problems. Proc. Am. Math. Soc. 131, 2161–2170 (2003)
    • 26. Zhao, F.R., Chen, J.: Central configurations for (pn + gn)-body problems. Celest. Mech. Dyn. Astr. 121, 101–106 (2015)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno