Ir al contenido

Documat


First Integrals Without Integrating Factors or Symmetries

    1. [1] Universidad de Cádiz

      Universidad de Cádiz

      Cádiz, España

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • A new method for finding first integrals of ordinary differential equations (ODEs) is presented. The approach is based on the complete integrability of the Pfaffian system associated with the ODE, defined on a suitable jet space. Remarkably, the method does not require the use of symmetries or integrating factors. Examples of second-, third-, and fourth-order ODEs are provided to illustrate the method, including cases where classical approaches fail. This work extends the range of tools available for the analysis and solution of ODEs.

  • Referencias bibliográficas
    • 1. Olver, P.J.: Applications of Lie Groups to Differential Equations, vol. 107. Springer-Verlag, New York (1986). https://doi.org/10.1007/978-1-4684-0274-2
    • 2. Stephani, H.: Differential Equations: Their Solutions Using Symmetry. Cambridge University Press, New York (1989). https://doi.org/10.1137/1033086
    • 3. Cheb-Terrab, E., Duarte, L., da Mota, L.: Computer algebra solving of second order odes using symmetry methods. Comput. Phys. Commun. 108,...
    • 4. Muriel, C., Romero, J.L.: New methods of reduction for ordinary differential equations. IMA J. Appl. Math. 66(2), 111–125 (2001). https://doi.org/10.1093/imamat/66.2.111
    • 5. Muriel, C., Romero, J.L.: First integrals, integrating factors and λ-symmetries of second-order differential equations. J. Phys. A: Math....
    • 6. Mahomed, K.S., Momoniat, E.: Symmetry classification of first integrals for scalar dynamical equations. Int. J. Non-Linear Mech. 59, 52–59...
    • 7. Kozlov, R.: On first integrals of ODEs admitting λ-symmetries, in AIP Conference Proceedings, vol. 1648, AIP Publishing, (2015). https://doi.org/10.1063/1.4912651
    • 8. Polat, G.: Analysis of first integrals for some nonlinear differential equations via different approaches. Eur. Phys. J. Plus 134, 1–18...
    • 9. Pan-Collantes, A.J., Ruiz, A., Muriel, C., Romero, J.L.: ∞-symmetries of distributions and integrability. J. Diff. Eq. 348, 126–153 (2023)....
    • 10. Pan-Collantes, A.J., Muriel, C., Ruiz, A.: Integration of differential equations by ∞-structures. Mathematics 11(18), 3897 (2023)
    • 11. Braz, A., Duarte, L., Ferreira, H., Guabiraba, A., Mota, L., Nascimento, I.: A new way to use nonlocal symmetries to determine first integrals...
    • 12. Cheb-Terrab, E., Roche, A.: Integrating Factors and ODE Patterns, arXiv, 12 (1997). https://doi.org/10.48550/arXiv.physics/9711027
    • 13. Cheb-Terrab, E., Roche, A.: Integrating factors for second-order odes. J. Symbolic Comput. 27, 501–519 (1999). https://doi.org/10.1006/jsco.1999.0264
    • 14. Chandrasekar, V., Senthilvelan, M., Lakshmanan, M.: Extended prelle-singer method and integrability/solvability of a class of nonlinear...
    • 15. Muriel, C., Romero, J.: Integrating factors and λ-symmetries. J. Nonlinear Math. Phys. 15(Suppl 3), 300–309 (2008). https://doi.org/10.2991/jnmp.2008.15.s3.29
    • 16. Guha, P., Choudhury, A.G., Khanra, B.: On adjoint symmetry equations, integrating factors and solutions of nonlinear odes. J. Phys. A:...
    • 17. Guha, P., Choudhury, A.G., Khanra, B.: λ-symmetries, isochronicity, and integrating factors of nonlinear ordinary differential equations....
    • 18. Hoskins, J., Bluman, G.: Higher order symmetries and integrating factors for ordinary differential equations. J. Math. Anal. Appl. 435,...
    • 19. Saunders, D.J.: The geometry of jet bundles, vol. 142. Cambridge University Press (1989). https://doi.org/10.1017/CBO9780511526411
    • 20. Bryant, R.L., Chern, S.S., Gardner, R.B., Goldschmidt, H.L., Griffiths, P.A.: Exterior differential systems, vol. 18. Springer, New York...
    • 21. Pan-Collantes, A.J., Álvarez-García, J.A.: Autonomous second-order ODEs: a geometric approach. Axioms 13(11), 788 (2024). https://doi.org/10.3390/axioms13110788
    • 22. Muriel, C., Romero, J.L., Ruiz, A.: λ-symmetries and integrability by quadratures. IMA J. Appl. Math. 82(5), 1061–1087 (2017). https://doi.org/10.1093/imamat/hxx024
    • 23. Duarte, L.G.S., Duarte, S.E.S., Da Mota, L.A.C.P., Skea, J.E.F.: Solving second-order ordinary differential equations by extending the...
    • 24. Avellar, J., Cardoso, M.S., Duarte, L.G.S., da Mota, L.A.C.P.: Dealing with rational second order ordinary differential equations where...
    • 25. Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: On the complete integrability and linearization of certain second order nonlinear...
    • 26. Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: New aspects of integrability of force-free duffing-van der pol oscillator and related...
    • 27. Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: An unusual liénard type nonlinear oscillator with properties of a linear harmonic...
    • 28. Prelle, M.J., Singer, M.F.: Elementary first integrals of differential equations. Trans. Am. Math. Soc. 279, 215–229 (1983)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno