Ir al contenido

Documat


On Hopf Bifurcation in Piecewise Smooth Near-Hamiltonian Systems

  • Maoan Han [1] ; Zening Lai [1]
    1. [1] Zhejiang Normal University

      Zhejiang Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we study Hopf bifurcation for planar piecewise smooth near-Hamiltonian systems with an elementary center, and obtain some new properties of the first order Melnikov function. As an application, we give upper and lower bounds of the maximum number of limit cycles of a piecewise polynomial system near the elementary center.

  • Referencias bibliográficas
    • 1. Casimiro, J.A., Llibre, J.: Limit cycles of discontinuous piecewise differential hamiltonian systems separated by a circle, or a parabola,...
    • 2. Chen, X., Han, M.: A linear estimate of the number of limit cycles for a piecewise smooth nearhamiltonian system. Qualitative Theory of...
    • 3. Chen, J., Han, M.: Bifurcation of limit cycles by perturbing a piecewise linear hamiltonian system. Qualitative Theory of Dynamical Systems...
    • 4. Coll, B., Gasull, A., Prohens, R.: Degenerate hopf bifurcation in discontinuous planar systems. J. Math. Anal. Appl. 253, 671–690 (2001)
    • 5. Filippov, A.F.: Differential Equation with Discontinuous Right-Hand Sides. Kluwer Academic, Netherlands (1988)
    • 6. Liang, F., Han, M., Romanovski, V.G.: Bifurcation of limit cycles by perturbing a piecewise linear hamiltonian system with a homoclinic...
    • 7. Han, M., Liu, S.: Hopf bifurcation in a class of piecewise smooth near-hamiltonian systems. Bulletin des Sciences Mathématiques 195, 103471...
    • 8. Han, M., Sheng, L.: Bifurcation of limit cycles in piecewise smooth systems via melnikov function. Journal of Applied Analysis and Computation...
    • 9. Han, M., Sheng, L., Zhang, X.: Bifurcation theory for finitely smooth planar autonomous differential systems. J. Differential Equations...
    • 10. Han, M., Zang, H., Yang, J.: Limit cycle bifurcations by perturbing a cuspidal loop in a hamiltonian system. J. Differential Equations...
    • 11. Han, M., Zhang, W.: On hopf bifurcation in non-smooth planar systems. J. Differential Equations 248(9), 2399–2416 (2010)
    • 12. Han, M., Yang, J.: The maximum number of zeros of functions with parameters and application to differential equations. Journal of Nonlinear...
    • 13. Ji, G., Sun, Y.: Bifurcation for a class of piecewise cubic systems with two centers. Electron. J. Qual. Theory Differ. Equ. 46, 1–12...
    • 14. S. Li, J. Llibre, Y. Zhao, On the index of an isolated equilibrium point for piecewise polynomial differential systems, Journal of Mathematical...
    • 15. Liu, X., Han, M.: Bifurcation of limit cycles by perturbing piecewise hamiltonian systems. International Journal of Bifurcation and Chaos...
    • 16. Liang, F., Han, M.: Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems. Chaos, Solitons...
    • 17. Liu, S., Han, M.: Bifurcation theory of limit cycles by higher order melnikov functions and applications. J. Differential Equations 403,...
    • 18. Liang, F., Han, M.: Degenerate Hopf bifurcation in nonsmooth planar systems, International Journal of Bifurcation and Chaos, 22(3) , 1250057,...
    • 19. Villanueva, Y., Llibre, J., Euzébio, R.: Limit cycles of generic piecewise center-type vector fields in R3 separated by either one plane...
    • 20. Xiong, Y., Han, M.: Bifurcation of limit cycles by perturbing a piecewise linear hamiltonian system. Abstr. Appl. Anal. 575390, 19 (2013)
    • 21. Yang, J., Han, M.: Some properties of melnikov functions near a cuspidal loop. Sci China Math 67(4), 767–786 (2024)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno