Ir al contenido

Documat


A Novel Framework for Proving Global Stability of Age-Structured Models: Application to a Heroin Epidemic Model

  • Jianquan Li [1] ; Junyuan Yang [2] ; Nini Xue [1] ; Yao Chen [1]
    1. [1] Xijing University

      Xijing University

      China

    2. [2] Shanxi University

      Shanxi University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 5, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The global stability of age-structured dynamical models holds significantly practical implications. At present, the Lyapunov direct method is one of the most effective techniques for proving such global properties. In this article, we introduce a method for establishing the global stability of the positive steady state of an age-structured model. This method involves constructing a suitable Lyapunov functional and demonstrating the negative (semi-)definiteness of its derivative along the solutions of the model. The appropriate Lyapunov functional is systematically derived based on the structure of the model and its corresponding boundary conditions. Meanwhile, the negative (semi-)definiteness of the derivative is proven by expressing it in precise form and applying a series of inequalities. The application of this method to an age-structured heroin epidemic model demonstrates its efficacy and generalizability. This approach significantly simplifies the analysis of the global stability of the positive steady state of age-structured models with integral boundary conditions.

  • Referencias bibliográficas
    • 1. Brauer, F., Shuai, Z., van den Driessche, P.: Dynamics of an age-of-infection cholera model. Math. Biosci. Eng. 10(5&6), 1335–1349...
    • 2. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)
    • 3. LaSalle, J.P.: The stability of dynamical systems. SIAM, Philadelphia (1976)
    • 4. Li, J., Chen, Y., Zhang, F.: An improved algebraic approach to proving global stability of autonomous polynomial differential systems with...
    • 5. Li, J., Chen, Y., Zhang, F., Zhang, P.: A novel integral inequality for stability of age-structured epidemic models. Appl. Math. Lett....
    • 6. Li, J., Chen, Y., Xi, X., Xue, N.: An analytical approach to applying the lyapunov direct method to an epidemic model with age and stage...
    • 7. Li, J., Chen, Y., Zhang, F., Zhang, P.: An analytical approach of applying the lyapunov direct method to polynomial differential systems...
    • 8. Li, J., Lou, Y., Zhang, P., Chen, Y.: An analytical approach to determining the coefficients in lyapunov direct method: with application...
    • 9. McCluskey, C.C.: Global stability for an sei epidemiological model with continuous age-structure in the exposed and infectious classes....
    • 10. Magal, P., McCluskey, C.C., Webb, G.F.: Lyapunov functional and global asymptotic stability for an infection-age model. Appl. Anal. 89(7),...
    • 11. Huang, G., Liu, X., Takeuchi, Y.: Lyapunov functions and global stability for age-structured hiv infection model. SIAM J. Appl. Math....
    • 12. Melnik, A., Korobeinikov, A.: Lyapunov functions and global stability for sir and seir models with age-dependent susceptibility. Math....
    • 13. Fang, B., Li, X., Martcheva, M., Cai, L.: Global stability for a heroin model with age-dependent susceptibility. J. Syst. Sci. Complex....
    • 14. Fang, B., Li, X., Martcheva, M., Cai, L.: Global asymptotic properties of a heroin epidemic model with treat-age. Appl. Math. Comput....
    • 15. Liu, L., Liu, X.: Mathematical analysis for an age-structured heroin epidemic model. Acta Appl. Math. 164, 193–217 (2019)
    • 16. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. Springer-Verlag, Berlin, Heidelberg (1996)
    • 17. Yang, J., Li, X., Zhang, F.: Global dynamics of a heroin epidemic model with age structure and nonlinear incidence. Int. J. Biomath. 9(3),...
    • 18. Djilali, S., Touaoula, T., Miri, S.: A heroin epidemic model: very general nonlinear incidence, treat-age, and global stability. Acta...
    • 19. Wang, J., Wang, J., Kuniya, T.: Analysis of an age-structured multi-group heroin epidemic model. Appl. Math. Comput. 347, 78–100 (2019)
    • 20. Xu, R., Bai, N., Tian, X.: Global dynamics of a mathematical model of tuberculosis with age-dependent latency and active infection. J....
    • 21. Xu, R., Yang, J., Tian, X., Lin, J.: Global dynamics of a tuberculosis model with fast and slow progression and age-dependent latency...
    • 22. Yu, Z., Zhang, J., Zhang, Y., et al.: Mathematical modeling and simulation for COVID-19 with mutant and quarantined strategy. Chaos, Solitons...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno