Ir al contenido

Documat


Straightening for lax transformations and adjunctions of (∞, 2)-categories

  • Fernando Abellán [1] ; Andrea Gagna [2] ; Rune Haugseng [1]
    1. [1] Norwegian University of Science and Technology

      Norwegian University of Science and Technology

      Noruega

    2. [2] Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01084-z
  • Enlaces
  • Resumen
    • We prove an unstraightening result for lax transformations between functors from an arbitrary (∞,2)(\infty, 2)(∞,2)-category to that of (∞,2)(\infty, 2)(∞,2)-categories. We apply this to characterize adjoints in (∞,2)(\infty, 2)(∞,2)-categories of functors and (op)lax transformations, and to prove a mate correspondence between lax transformations that are componentwise right adjoints and oplax transformations that are componentwise left adjoints, for such transformations among functors between arbitrary (∞,2)(\infty, 2)(∞,2)-categories.

  • Referencias bibliográficas
    • Abellán García, F., Stern, W.H.: 2-Cartesian fibrations I: A model for ∞-bicategories fibred in ∞- bicategories. Appl. Categ. Structures 30(6),...
    • Abellán, F., Stern, W.H.: 2-Cartesian fibrations II: A Grothendieck construction for ∞-bicategories, (2022). arXiv:2201.09589
    • Abellán, F.: On local fibrations of (∞, 2)-categories, (2023). arXiv:2305.00947
    • Abellán, F.: Comparing lax functors of (∞, 2)-categories, (2023). arXiv:2311.12746
    • Ayala, D., Mazel-Gee, A., Rozenblyum, N.: Stratified noncommutative geometry, Mem. Amer. Math. Soc., 297(1485), (2024)
    • Barwick, C.:(∞, n)-Cat as a closed model category, Thesis (Ph.D.)–University of Pennsylvania, (2005)
    • Barwick, C.: Schommer-Pries, Christopher, On the unicity of the theory of higher categories. J. Amer. Math. Soc. 34(4), 1011–1058 (2021)
    • Bergner, J.E.: Rezk, Charles, Comparison of models for (∞, n)-categories, I. Geom. Topol. 17(4), 2163–2202 (2013)
    • Campion, T.: The Gray tensor product of (∞, n)-categories, (2023), arXiv:2311.00205
    • Campion, T., Maehara, Y.: A model-independent Gray tensor product for (∞, 2)-categories, (2023). arXiv:2304.05965
    • Gagna, A., Harpaz, Y., Lanari, E.: Fibrations and lax limits of (∞, 2)-categories, (2020). arXiv:2012.04537
    • Gagna, A., Harpaz, Y., Lanari, E.: Gray tensor products and Lax functors of (∞, 2)-categories. Adv. Math. 391, 107986 (2021). arXiv:2006.14495
    • Gagna, A., Harpaz, Y., Lanari, E.: Cartesian fibrations of (∞, 2)-categories. Algebr. Geom. Topol. 24(9), 4731–4778 (2024). arXiv:2107.12356
    • Gagna, A., Harpaz, Y., Lanari, E.: On the equivalence of all models for (∞, 2)-categories. J. Lond. Math. Soc. (2) 106(3), 1920–1982 (2022)....
    • Gaitsgory, D., Rozenblyum, N.: A study in derived algebraic geometry. Vol. I. Correspondences and duality, Mathematical Surveys and Monographs,...
    • Haugseng, R.: On the equivalence between n-spaces and iterated Segal spaces. Proc. Amer. Math. Soc. 146(4), 1401–1415 (2018)
    • Haugseng, R.: On lax transformations, adjunctions, and monads in (∞, 2)-categories. High. Struct. 5(1), 244–281 (2021). arXiv:2002.01037
    • Haugseng, R.: On the tensor product of enriched ∞-categories, (2023). arXiv:2002.01037
    • Haugseng, R., Hebestreit, F., Linskens, S., Nuiten, J.: Lax monoidal adjunctions, two-variable fibrations and the calculus of mates. Proc....
    • Haugseng, R., Melani, V., Safronov, P.: Shifted coisotropic correspondences. J. Inst. Math. Jussieu 21(3), 785–849 (2022). arXiv:1904.11312
    • Hinich, V.: Yoneda lemma for enriched ∞-categories. Adv. Math. 367, 107129 (2020). arXiv:1805.07635
    • Johnson-Freyd, T., Scheimbauer, C.: (Op)lax natural transformations, twisted quantum field theories, and “even higher” Morita categories....
    • Liu, Y.L.L., Mazel-Gee, A., Reutter, D., Stroppel, C., Wedrich, P.: A braided monoidal(∞, 2)-category of Soergel bimodules, (2024). arXiv:2401.02956
    • Loubaton, F.: Theory and models of (∞, ω)-categories, (2023). arXiv:2307.11931
    • Lurie, J.: Higher Topos Theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, (2009). Available from...
    • Lurie, J.: (∞,2)-Categories and the Goodwillie Calculus I, (2009). Available at http://math.ias.edu/ ~lurie/papers/GoodwillieI.pdf
    • Lurie, J.: Higher Algebra, (2017). Available at http://math.ias.edu/~lurie/
    • Maehara, Y.: The Gray tensor product for 2-quasi-categories. Adv. Math. 377, 107461 (2021)
    • Nikolaus, T.: Stable ∞-Operads and the multiplicative Yoneda lemma, (2016). arXiv:1608.02901
    • Nuiten, J.: On straightening for Segal spaces. Compos. Math. 160(3), 586–656 (2024). arXiv:2108.11431
    • Rezk, C.: A Cartesian presentation of weak n-categories. Geom. Topol. 14(1), 521–571 (2010)
    • Riehl, E.: Verity, Dominic, Homotopy coherent adjunctions and the formal theory of monads. Adv. Math. 286, 802–888 (2016). arXiv:1310.8279
    • Stefanich, G.: Presentable (∞, n)-categories, (2020). arXiv:2011.03035
    • Street, R.: The algebra of oriented simplexes. J. Pure Appl. Algebra 49(3), 283–335 (1987)
    • Verity, D.R.B.: Weak complicial sets. I. Basic homotopy theory. Adv. Math. 219(4), 1081–1149 (2008)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno