Ir al contenido

Documat


Flat Generalized Connections on Courant Algebroids

  • Gil R. Cavalcanti [1] ; Jaime Pedregal [1] ; Roberto Rubio [2]
    1. [1] Utrecht University

      Utrecht University

      Países Bajos

    2. [2] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01083-0
  • Enlaces
  • Resumen
    • We consider a family of metric generalized connections on transitive Courant algebroids, which includes the canonical Levi-Civita connection, and study the flatness condition. We find that the building blocks for such flat transitive Courant algebroids are compact simple Lie groups. Further, we give a description of left-invariant flat Levi-Civita generalized connections on such Lie groups, which, in particular, shows the existence of non-flat ones.

  • Referencias bibliográficas
    • Agricola, I., Friedrich, T.: A note on flat metric connections with antisymmetric torsion. Differential Geom. Appl. 28(2), 480–487 (2010)
    • Agricola, I.: The Srní Lectures on Non-integrable Geometries with Torsion. Archivum Mathematicum 42, 5–84 (2006)
    • Apostolov, V., Streets, J.: The nondegenerate generalized Kähler Calabi-Yau problem. Journal für die reine und angewandte Mathematik (Crelles...
    • Bischoff, F., Gualtieri, M., Zabzine, M.: Morita equivalence and the generalized Kähler potential. Journal of Differential Geometry, 121(2),...
    • Boulanger, F.: Toric generalized Kähler structures. Journal of Symplectic Geometry 17(4), 973–1019 (2019)
    • Bredon, G.E.: Topology and Geometry. Number 139 in Graduate Texts in Mathematics. Springer, (1993)
    • Cavalcanti, G.R.: Formality in generalized Kähler geometry. Topology and its Applications 154, 1119– 1125 (2007)
    • Coimbra, A., Minasian, R., Triendl, H., Waldram, D.: Generalised geometry for string corrections. J. High Energy Phys. 160, 2014 (2014)
    • Cavalcanti, G.R., Pedregal, J., Rubio, R.: On the Equivalence of Generalized Ricci Curvatures. arXiv:2406.06695, to appear in Proc. Amer....
    • Cartan, E., Schouten, J.A.: On Riemannian Geometries admitting an absolute parallelism. Proceedings of the Royal Academy at Amsterdam, 29,...
    • Coimbra, A., Strickland-Constable, C., Waldram, D.: Supergravity as generalised geometry I: type II theories. J. High Energy Phys. 91, 2011...
    • Chen, Z., Stiénon, M., Xu, P.: On regular Courant algebroids. Journal of Symplectic Geometry 11(1), 1–24 (2013)
    • Döppenschmitt, L.: Hamiltonian Geometry of Generalized Kähler Metrics. PhD thesis, University of Toronto, (2022)
    • Fernandes, R.L.: Connections in Poisson geometry. I. Holonomy and invariants. Journal of Differential Geometry 54(2), 303–365 (2000)
    • Fernandes, R.L.: Lie Algebroids, Holonomy and Characteristic Classes. Adv. Math. 170(1), 119–179 (2002)
    • García-Fernández, M.: Torsion-Free Generalized Connections and Heterotic Supergravity. Commun. Math. Phys. 332, 89–115 (2014)
    • García-Fernández, M.: Ricci flow, Killing spinors, and T-duality in generalized geometry. Adv. Math. 350, 1059–1108 (2019)
    • García-Fernández, M., González Molina, R.: Harmonic metrics for the Hull-Strominger system and stability. International Journal of Mathematics,...
    • García-Fernández, M., González Molina, R., Streets, J.: Pluriclosed flow and the Hull-Strominger system. (2024). arXiv:2408.11674
    • García-Fernández, M., Rubio, R., Tipler, C.: Infinitesimal moduli for the Strominger system and Killing spinors in generalized geometry. Math....
    • García-Fernández, M., Streets, J.: Generalized Ricci Flow. Number 76 in University Lecture Series. American Mathematical Society, (2021)
    • Goto, R.: Unobstructed K-deformations of generalized complex structures and bi-Hermitian structures. Adv. Math. 231, 1041–1067 (2012)
    • Goto, R.: Scalar curvature as moment map in generalized Kähler geometry. Journal of Symplectic Geometry 18(1), 147–190 (2020)
    • Gualtieri, M.: Generalized complex geometry. PhD thesis, University of Oxford, (2004)
    • Gualtieri, M.: Branes on Poisson Varieties. In O. Garcia-Prada, J.P. Bourguignon, and S. Salamon, editors, The Many Facets of Geometry: A...
    • Gualtieri, M.: Generalized Kähler Geometry. Commun. Math. Phys. 331, 297–331 (2014)
    • Gualtieri, M.: Generalized Kähler Metrics from Hamiltonian Deformations. In A. Dancer, J.E. Anderse, and O. García-Prada, editors, Geometry...
    • Hitchin, N.: Brackets, forms and invariant functionals. Asian Journal of Mathematics 10(3), 541–560 (2006)
    • Hitchin, N.: Bihermitian metrics on Del Pezzo surfaces. Journal of Symplectic Geometry 5(1), 1–8 (2007)
    • Jurˇco, B., Mouˇcka, F., Vysoký, J.: Palatini variation in generalized geometry and string effective actions. J. Geom. Phys. 191, 104909 (2023)
    • Lin, Y., Tolman, S.: Symmetries in Generalized Kähler Geometry. Commun. Math. Phys. 268, 199–222 (2006)
    • Oliynyk, T., Suneeta, V., Woolgar, E.: A gradient flow for worldsheet nonlinear sigma models. Nucl. Phys. B 739, 441–458 (2006)
    • Streets, J., Strickland-Constable, C., Valach, F.: Ricci Flow on Courant Algebroids. (2024). arXiv:2402.11069v1
    • Streets, J.: Regularity and expanding entropy for connection Ricci flow. J. Geom. Phys. 58, 900–912 (2008)
    • Ševera, P., Valach, F.: Courant algebroids, and renormalization of Poisson-Lie T-duality. Letterns in Mathematical Physics 107, 1823–1835...
    • Ziller, W.: Lie Groups. Representation Theory and Symmetric Spaces, (2010). Lecture notes, available at https://www2.math.upenn.edu/~wziller/math650/LieGroupsReps.pdf

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno