Ir al contenido

Documat


Total positivity for matroid Schubert varieties

  • Xuhua He [1] ; Connor Simpson [2] ; Kaitao Xie [1]
    1. [1] University of Hong Kong

      University of Hong Kong

      RAE de Hong Kong (China)

    2. [2] Institute for Advanced Study

      Institute for Advanced Study

      Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01080-3
  • Enlaces
  • Resumen
    • We define the totally nonnegative matroid Schubert variety Y_V of a linear subspace V ⊂ R^n. We show that Y_V is a regular CW complex homeomorphic to a closed ball, with strata indexed by pairs of acyclic flats of the oriented matroid of V. This closely resembles the regularity theorem for totally nonnegative generalized flag varieties. As a corollary, we obtain a regular CW structure on the real matroid Schubert variety of V.

  • Referencias bibliográficas
    • Ardila, F., Boocher, A.: The closure of a linear space in a product of lines. J. Algebraic Combin. 43(1), 199–235 (2016)
    • Ardila, F., Klivans, C.J., Williams, L.K.: The positive Bergman complex of an oriented matroid. Eur. J. Comb. 27, 577–591 (2004)
    • Ardila, F.: The geometry of geometries: matroid theory, old and new (2021). arXiv:2111.08726 [math.CO]
    • Ardila, F., Reiner, V., Williams, L.: Bergman complexes, Coxeter arrangements, and graph associahedra. Euro. J. Combinatorics 27(4), 577–591...
    • Arkani-Hamed, N., Trnka, J.: The amplituhedron. J. High Energy Phys. 2014(10), 1–33 (2014)
    • Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.: Oriented matroids. 2nd ed. Vol. 46. Encyclopedia of mathematics and its...
    • Björner, A.: Posets, regular CW complexes, and Bruhat order. Euro. J. Combinatorics 5, 7–16 (1984)
    • Braden, T., Huh, J., Matherne, J.P., Proudfoot, N., Wang, B.: “Singular Hodge theory for combinatorial geometries”. arXiv e-prints (Oct. 2020)....
    • Björner, A., Wachs, M.: On lexicographically shellable posets. Trans. of the AMS 277(1), 323–323 (1983)
    • Danaraj, G., Klee, V.: Shellings of spheres and polytopes. Duke Math. J. 41, 443–451 (1974)
    • Elias, B., Proudfoot, N., Wakefield, M.: The Kazhdan-Lusztig polynomial of a matroid. Adv. Math. 299, 36–70 (2016)
    • Fock, V., Goncharov, A.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. I.H.E.S. 103, 1–211 (2006)
    • Fomin, S., Zelevinksy, A.: Cluster algebras. I. Foundations. J. Amer. Math. Soc. 15(2), 497–529 (2002)
    • Huh, J., Wang, B.: Enumeration of points, lines, planes, etc. Acta Math. 218(2), 297–317 (2017)
    • Iri, M.: “Applications of Matroid Theory”. In: Mathematical Programming The State of the Art: Bonn 1982. Ed. by Achim Bachem, Bernhard Korte,...
    • Jiang, L.: “Real matroid Schubert varieties, zonotopes, and virtual Weyl groups”. In: Proceedings of the 36th Conference on Formal Power Series...
    • Jiang, L., Li, Y.: “Topology of real matroid Schubert varieties”. In preparation (2025+)
    • Karlin, S.: Total positivity, vol. 1. Stanford University Press, Stanford, CA (1968)
    • Katz, E.: Matroid theory for algebraic geometers (2014). arXiv:1409.3503 [math.AG]
    • Lusztig, G.: “Total positivity in reductive groups”. In: Lie theory and geometry. Vol. 123. Progr. Math. Boston, MA: Birkhäuser Boston, pp....
    • Lundell, A., Weingram, S.: The topology of CW complexes. Litton Educational Publishing Inc., New York (1969)
    • Marsh, B.R., Rietsch, K.: “The Intersection of Opposed Big Cells in The Real Flag Variety of Type G2”. In: Proceedings of the London Mathematical...
    • Nakasawa, T.: Zur axiomatik der linearen abhängigkeit. Science Reports of the Tokyo Bunrika Daigaku 2(43), 235–255 (1935)
    • Proudfoot, N., Speyer, D.: A broken circuit ring. Beitra ä ge zue algebra and geometrie 47(1), 161–166 (2006)
    • Proudfoot, N., Xu, Y., Young, B.: “The Z-polynomial of a matroid”. Electronic J. Combin. 25(1) (2018)
    • Recski, A.: “Engineering Applications of Matroids - A Survey”. Matroid Theory and its Applications. Ed. by A. Barlotti. Berlin, Heidelberg:...
    • Rosen, Z., Sidman, J., Theran, L.: Algebraic matroids in action. Am. Math. Mon. 127(3), 199–216 (2020)
    • Schoenberg, I.: Über variationsvermindernde lineare Transformationen. Math. Z. 32(1), 321–328 (1930)
    • Stanley, R.P.: Enumerative Combinatorics, vol. 1, 2nd edn. Cambridge University Press, Cambridge (2011)
    • Terao, H.: Algebras generated by reciprocals of linear forms. J. Algebra 2(250), 549–558 (2002)
    • Whitney, H.: On abstract properties of linear dependence. Amer. J. Math. 3, 509–533 (1935)
    • White, N.: Theory of matroids. Ed. by Gian-Carlo Rota. Vol. 26. Encyclopedia of mathematics and its applications. New York: Cambridge University...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno