Ir al contenido

Documat


Moderately discontinuous homology of real surfaces

  • Davi Lopes Medeiros [1] ; José Edson Sampaio [1] ; Emanoel Souza [2]
    1. [1] Universidade Federal do Ceará

      Universidade Federal do Ceará

      Brasil

    2. [2] Universidade Estadual do Ceará

      Universidade Estadual do Ceará

      Brasil

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01076-z
  • Enlaces
  • Resumen
    • In this paper, we investigate the MD-homology of definable surface germs for the inner and outer metrics. We completely determine the MD-homology of surfaces for the inner metric and we present a great variety of interesting MD-homology of surfaces for the outer metric, for instance, we determine the MD-homology of some bubbles, snake surfaces, and horns. Furthermore, we explicit the diversity of MD-homology of surfaces for the outer metric in general, showing how difficult the outer classification problem is. On the other hand, we show that, under specific conditions, the weakly outer Lipschitz equivalence completely determines the MD-homology of surfaces for the outer metric, showing that these two subjects are quite related.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno