Ir al contenido

Documat


The 4-dimensional disc embedding theorem and dual spheres

  • Mark Powell [1] ; Arunima Ray [2] ; Peter Teichner [2]
    1. [1] University of Glasgow

      University of Glasgow

      Reino Unido

    2. [2] Max Planck Institute for Mathematics

      Max Planck Institute for Mathematics

      Kreisfreie Stadt Bonn, Alemania

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01069-y
  • Enlaces
  • Resumen
    • We modify the proof of the disc embedding theorem for 4-manifolds, which appeared as Theorem 5.1A in the book “Topology of 4-manifolds” by Freedman and Quinn, in order to construct geometrically dual spheres. These were claimed in the statement but not constructed in the proof. We also prove Proposition 1.6 from the Freedman-Quinn book regarding generic homotopies of discs or spheres in a 4-manifolds, which was not proven there.

  • Referencias bibliográficas
    • Behrens, S., Kalmár, B., Kim, M.H., Powell, M., Ray, A. (eds.), The disc embedding theorem, Oxford University Press, (2021)
    • Casson, A.: Three lectures on new infinite constructions in 4-dimensional manifolds, à la recherche de la topologie perdue, 201–244. With...
    • Donaldson, S.K.: An application of gauge theory to four-dimensional topology. J. Differential Geom. 18(2), 279–315 (1983)
    • Feller, P., Powell, M.: Grope height raising and 1-storey capped towers, The disc embedding theorem, (2021)
    • Freedman, M., Quinn, F.: Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, (1990)
    • Freedman, M.: The topology of four-dimensional manifolds. J. Differential Geom. 17(3), 357–453 (1982)
    • Freedman, M.H.: The disk theorem for four-dimensional manifolds, Proceedings of the International Congress of Mathematicians, 1, 2 (Warsaw,...
    • Friedl, S., Teichner, P.: New topologically slice knots. Geom. Topol. 9, 2129–2158 (2005)
    • Freedman, M.H., Teichner, P.: 4-manifold topology. I. Subexponential groups. Invent. Math. 122(3), 509–529 (1995)
    • Golubitsky, M., Guillemin, V.: Stable mappings and their singularities, Springer-Verlag, New YorkHeidelberg. Graduate Texts in Mathematics,...
    • Garoufalidis, S., Teichner, P.: On knots with trivial Alexander polynomial. J. Differential Geom. 67(1), 167–193 (2004)
    • Hirsch, M.W.: Differential topology, vol. 33. Springer, Cham (1976)
    • Hambleton, I., Kreck, M.: On the classification of topological 4-manifolds with finite fundamental group. Math. Ann. 280(1), 85–104 (1988)
    • Hambleton, I., Kreck, M.: Cancellation, elliptic surfaces and the topology of certain four-manifolds. J. Reine Angew. Math. 444, 79–100 (1993)
    • Hambleton, I., Kreck, M., Teichner, P.: Topological 4-manifolds with geometrically two-dimensional fundamental groups. J. Topol. Anal. 1(2),...
    • Klug, M.R., Miller, M.: Concordance of surfaces and the Freedman-Quinn invariant. arxiv:1912.12286 (2019)
    • Kim, M.H., Orson, P., Park, J., Ray, A.: Good groups, The disc embedding theorem, (2021)
    • Kasprowski, D., Powell, M., Ray, A.: Counterexamples in 4-manifold topology. EMS Surv. Math. Sci. 9(1), 193–249 (2022)
    • Krushkal, V.S., Quinn, F.: Subexponential groups in 4-manifold topology. Geom. Topol. 4, 407–430 (2000)
    • Kreck, M.: Surgery and duality. Ann. of Math. (2) 149(3), 707–754 (1999)
    • Lee, J.M.: Introduction to smooth manifolds, Graduate Texts in Mathematics, vol. 218. Springer-Verlag, New York (2003)
    • Miller, A.N., Powell, M.: Tower height raising and embedding, The disc embedding theorem (2021)
    • Orson, P., Powell, M., Ray, A.: The s-cobordism theorem, the sphere embedding theorem and the poincaré conjecture, The disc embedding theorem,...
    • Powell, M., Ray, A.: Basic geometric constructions, The disc embedding theorem, (2021)
    • Powell, M., Ray, A.: The development of topological 4-manifold theory, The disc embedding theorem, (2021)
    • Powell, M., Ray, A.: Gropes, towers, and skyscrapers, The disc embedding theorem, (2021)
    • Quinn, F.: Ends of maps. III. Dimensions 4 and 5, J. Differential Geom. 17(3), 503–521 (1982)
    • Quinn, F.: Isotopy of 4-manifolds. J. Differential Geom. 24(3), 343–372 (1986)
    • Quinn, F.: Topological transversality holds in all dimensions. Bull. Amer. Math. Soc. (N.S.) 18(2), 145–148 (1988)
    • Sato, Y.: Smooth 2-knots in S2 S2 with simply-connected complements are topologically unique. Proc. Amer. Math. Soc. 105(2), 479–485 (1989)
    • Sato, Y.: Locally flat 2-knots in S2 S2 with the same fundamental group. Trans. Amer. Math. Soc. 323(2), 911–920 (1991)
    • Spring, D.: Proper homotopy and immersion theory. Topology 11, 295–305 (1972)
    • Stong, R.: Uniqueness of connected sum decompositions in dimension 4. Topology and its applications 56, 277–291 (1994)
    • Teichner, P.: On the star-construction for topological 4-manifolds, Geometric topology (Athens, GA, 1993), 300–312 (1997)
    • Wall, C.T.C.: Surgery on compact manifolds, Second, Mathematical Surveys and Monographs, 69, American Mathematical Society, Providence, RI,...
    • Whitney, H.: The general type of singularity of a set of 2n-1 smooth functions of n variables. Duke Math. J. 10, 161–172 (1943)
    • Whitney, H.: The singularities of a smooth n-manifold in (2n -1)-space. Ann. of Math. (2) 45, 247–293 (1944)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno