Ir al contenido

Documat


Structural properties of the lattice cohomology of curve singularities

  • Alexander A. Kubasch [1] ; András Némethi [1] ; Gergő Schefler [1]
    1. [1] Alfréd Rényi Institute of Math., Budapest, Hungary
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01073-2
  • Enlaces
  • Resumen
    • The lattice cohomology of a reduced curve singularity was introduced in [4]. It is a bigraded ℤ[U]-module ?* = ⊕_{q,n} ?^{q}_{2n}, that categorifies the δ-invariant and extracts key geometric information from the semigroup of values.

      In the present paper we prove three structure theorems for this new invariant: (a) the weight-grading of the reduced cohomology is – just as in the case of the topological lattice cohomology of normal surface singularities [22] – nonpositive; (b) the graded ℤ[U]-module structure of ?⁰ determines whether or not a given curve is Gorenstein; and finally (c) the lattice cohomology module ?⁰ of any plane curve singularity determines its multiplicity.

  • Referencias bibliográficas
    • Abhyankar, S.S.: Local rings of high embedding dimension. Am. J. Math. 89(4), 1073–1077 (1967)
    • Ágoston, T., Némethi, A.: Analytic lattice cohomology of surface singularities, (2021). arXiv:2108.12294
    • Ágoston, T., Némethi, A.: The analytic lattice cohomology of isolated singularities, (2021). arXiv:2109.11266
    • Ágoston, T., Némethi, A.: The analytic lattice cohomology of isolated curve singularities, (2023). arXiv:2301.08981
    • Barucci, V., D’Anna, M., Fröberg, R.: Analytically unramified one-dimensional semilocal rings and their value semigroups. J. Pure Appl. Algebra...
    • Bass, H.: On the ubiquity of Gorenstein rings. Math. Z. 82(1), 8–28 (1963)
    • Buchweitz, R.-O., Greuel, G.-M.: The Milnor number and deformations of complex curve singularities. Invent. Math. 58(3), 241–281 (1980)
    • Bresinsky, H.: Semigroups corresponding to algebroid branches in the plane. Proc. Amer. Math. Soc. 32(2), 381–384 (1972)
    • Campillo, A., Delgado de la Mata, F., Gusein-Zade, S.M.: Integrals with respect to the Euler characteristic over spaces of functions and the...
    • Campillo, A., Delgado de la Mata, F., Kiyek, K.-H.: Gorenstein property and symmetry for onedimensional local Cohen-Macaulay rings. Manuscripta...
    • D’Anna, M., García-Sánchez, P.A., Micale, V., Tozzo, L.: Good subsemigroups of Nn. Internat. J. Algebra Comput. 28(2), 179–206 (2018)
    • Delgado de la Mata, F.: The semigroup of values of a curve singularity with several branches. Manuscripta Math. 59, 347–374 (1987)
    • Delgado de la Mata, F.: Gorenstein curves and symmetry of the semigroup of values. Manuscripta Math. 61(3), 285–296 (1988)
    • Garcia, A.: Semigroups associated to singular points of plane curves. J. Für die Reine und Angewandte Math. 336, 165–184 (1982)
    • Gorsky, E., Némethi, A.: Lattice and Heegaard Floer Homologies of Algebraic Links. Int. Math. Res. Notices 2015, 12737–12780 (2015)
    • Huneke, C.L.: Hyman Bass and ubiquity: Gorenstein rings, Contemporary Mathematics 243, AMS 55–78 (1999)
    • Kubasch, A.A., Némethi, A., Schefler, G.: Multiplicity and lattice cohomology of plane curve singularities. Rev. Roumaine Math. Pures Appl....
    • Kubasch, A.A., Schefler, G.: Lattice cohomology and the embedded topological type of plane curve singularities, arXiv:2504.13366
    • Kunz, E.: The value-semigroup of one dimensional Gorenstein rings. Proc. Am. Math. Soc. 25(4), 748–751 (1970)
    • Némethi, A.: On the Ozsváth-Szabó invariant of negative definite plumbed 3-manifolds. Geom. Topol. 9(2), 991–1042 (2005)
    • Némethi, A.: Graded roots and singularities, Proc. Advanced School and Workshop on Singularities in Geometry and Topology ICTP (Trieste, Italy),...
    • Némethi, A.: Lattice cohomology of normal surface singularities. Publ. Res. Inst. Math. Sci. 44(2), 507–543 (2008)
    • Némethi, A.: Normal Surface Singularities, Springer Nature, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Vol 74 (2022)
    • Némethi, A.: Filtered lattice homology of curve singularities, (2023). arXiv:2306.13889
    • Ozsváth, P.S., Szabó, Z.: On the Floer homology of plumbed three-manifolds. Geom. Topol. 7, 185–224 (2003)
    • Serre, J.–P.: Groupes algébriques et corps de classes, Actualités Scientifiques et Industrielles 1264, Hermann (1959)
    • Waldi, R.: Wertehalbgruppe and Singularität einer ebenen algebraischen Kurve, Dissertation, Regensburg, (1972)
    • Wall, C.T.C.: Singular Points of Plane Curves, London Math. Soc., Student Texts 63, Cambridge University Press (2004)
    • Yamamoto,M.: Classification of isolated algebraic singularities by their Alexander polynomials. Topology 23(3), 277–287 (1984)
    • Zariski, O.: Le probleme des modules pour les branches planes, with an appendix by B. Hermann, Teissier (1986)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno