Ir al contenido

Documat


Isogeny classes of cubic spaces

  • Arthur Bik [1] ; Alessandro Danelon [2] ; Andrew Snowden [3]
    1. [1] Max Planck Institute for Mathematics in the Sciences

      Max Planck Institute for Mathematics in the Sciences

      Kreisfreie Stadt Leipzig, Alemania

    2. [2] Eindhoven University of Technology

      Eindhoven University of Technology

      Países Bajos

    3. [3] University of Michigan–Ann Arbor

      University of Michigan–Ann Arbor

      City of Ann Arbor, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 4, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01056-3
  • Enlaces
  • Resumen
    • A cubic space is a vector space equipped with a symmetric trilinear form. Two cubic spaces are isogeneous if each embeds into the other. A cubic space is non-degenerate if its form cannot be expressed as a finite sum of products of linear and quadratic forms. We classify non-degenerate cubic spaces of countable dimension up to isogeny: the isogeny classes are completely determined by an invariant we call the residual rank, which takes values in ℕ ∪ {∞}. In particular, the set of classes is discrete and (under the partial order of embedability) satisfies the descending chain condition.

  • Referencias bibliográficas
    • Ananyan, T., Hochster, M.: Ideals generated by quadratic polynomials. Math. Res. Lett. 19, 233–244 (2012). https://doi.org/10.4310/MRL.2012.v19.n1.a18....
    • Ananyan, T., Hochster, M.: Small subalgebras of polynomial rings and Stillman’s conjecture. J. Amer. Math. Soc. 33, 291–309 (2020). https://doi.org/10.1090/jams/932....
    • Bik, A., Draisma, J., Eggermont, R.H.: Andrew Snowden. The geometry of polynomial representations in positive characteristic. arxiv:2406.07415
    • Bik, A., Draisma, J., Eggermont, R.H.: Andrew Snowden. Uniformity for limits of tensors. arxiv:2406.07415
    • Bik, A., Danelon, A., Draisma, J., Eggermont, R.H.: Universality of high-strength tensors. Vietnam J. Math. 50(2), 557–580 (2022). https://doi.org/10.1007/s10013-021-00522-7....
    • Bik, A., Draisma, J., Eggermont, R.H., Snowden, A.: The geometry of polynomial representations. Int. Math. Res. Not. IMRN 16, 14131–14195...
    • Clark, P.L.: On elementary equivalence, isomorphism and isogeny. J. Théor. Nombres Bordeaux 18(1), 29–58 (2006). https://doi.org/10.5802/jtnb.532....
    • Danelon, A., Snowden, A.: Isogeny classes of tensor spaces. In: preparation
    • Derksen, H., Eggermont, R.H., Snowden, A.: Topological noetherianity for cubic polynomials. Algebra Number Theory 11(9), 2197–2212 (2017)....
    • Draisma, J.: Topological Noetherianity of polynomial functors. J. Amer. Math. Soc. 32(3), 691–707 (2019). https://doi.org/10.1090/jams/923....
    • Erman, D., Sam, S.V., Snowden, A.: Big polynomial rings and Stillman’s conjecture. Invent. Math. 218(2), 413–439 (2019). https://doi.org/10.1007/s00222-019-00889-y....
    • Gross, H.: Quadratic forms in infinite dimensional vector spaces. Progr. Math. 1, Birkhäuser, Boston, (1979)
    • Harman, N.: Andrew Snowden. Ultrahomogeneous tensor spaces. arxiv:2207.09626
    • Kazhdan, D., Ziegler, T.: Properties of high rank subvarieties of affine spaces. Geom. Funct. Anal. 30, 1063–1096 (2020). https://doi.org/10.1007/s00039-020-00542-4....
    • Kirwan, F.: Moduli spaces of degree hypersurfaces in Pn. Duke Math. J. 58(1), 39–78 (1989). https:// doi.org/10.1215/S0012-7094-89-05804-3

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno